
XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 1

© Copyright 2011 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other
countries. All other trademarks are the property of their respective owners.

Summary This application note describes a parameterizable content-addressable memory (CAM), and is
accompanied by a reference design that replaces the CAM core previously delivered through
the CORE Generator™ software. The CAM reference design should be used for all new FPGA
designs targeting Virtex®-6, Virtex-5, Virtex-4, Spartan®-6, Spartan-3, Spartan-3E,
Spartan-3A, Spartan-3A DSP FPGAs, and newer architectures. All the features and interfaces
included in the reference design are backward compatible with the LogiCORE™ IP CAM v6.1
core. In addition, because the reference design is provided in plain-text VHDL format, the
implementation of the function is fully visible, allowing for easy debug and modification of the
code.

Introduction A CAM performs content matching rather than the address matching performed by standard
memory cores. The content matching approach enables faster data searches than can be
achieved by sequentially checking each address location in a standard memory for a particular
value. The higher speed searches are achieved by using content values as an index into a
database of address values. The additional ability to perform content compares in parallel
enables even higher speed searches. A set of scripts is included with the CAM reference
design that allow the customization of width, depth, memory type, and optional features.

Features

The CAM reference design has these features:

• Memory types: The CAM can be configured using one of two memory implementations:

• SRL16E-based CAM with a 16 clock cycle write operation and a one clock cycle
search operation.

• Block RAM-based CAM with only a two clock cycle write operation and a one clock
cycle search operation. The block RAM-based CAM also supports an optional
additional output register that adds a one clock cycle latency to all read operations.

• Ternary modes: The CAM supports two ternary modes for both write and search
operations in the SRL16E implementation:

• Standard ternary mode: Bit X matches either 1, 0, or X (1010 = 1X1X = 10XX) and is
referred to as a don’t care bit.

• Enhanced ternary mode: Bit X also matches either 1, 0, or X (1010 = 1X1X = 10XX),
also referred to as a don’t care bit. Bit U does not match any of the possible bit values:
1, 0, X, or U, and is referred to as an unmatchable bit in this document.

• Encoded/unencoded address: The match address can be in binary encoded, single-match
unencoded (one-hot), or multi-match unencoded (many-hot) form.

• Multiple match resolution: Whenever the data being read matches data from more than
one location in the CAM, a multiple match condition exists. The CAM supports this
situation.

• Single/multiple match flags: These two optional outputs can inform the user whether a
single or multiple match situation exists.

Application Note: Xilinx FPGAs

XAPP1151 (v1.0) March 1, 2011

Parameterizable Content-Addressable
Memory
Author: Kyle Locke

http://www.xilinx.com

Interface

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 2

• Multiple match address resolution: Depending on the parameter set by the user, the
CAM can return either the highest or lowest matching address when a multiple match
condition exists. This is only available when the address is converted to binary
encoding or one-hot encoding.

• Initialization: The CAM supports initialization of binary and standard ternary CAMs with
data from a MIF file, which is an ASCII file that contains the initial contents of the CAM. For
CAMs using initialization, data entries in the MIF file must be in binary form. Standard
ternary CAMs can be initialized with 0s, 1s, and Xs. Enhanced ternary CAMs cannot be
initialized.

• Simultaneous read/write: The CAM supports optional simultaneous write and search
operations, with an output to warn the user of possible collisions.

• Read warning flag: This flag indicates that the data applied to the CAM for a read
operation matches the data that is currently being written into the CAM by the
unfinished write operation. This flag works in both single- and multiple-match
scenarios.

Interface The CAM input and output ports are shown in Figure 1.

The CAM core signals are listed in Table 1.

X-Ref Target - Figure 1

Figure 1: CAM Schematic

Table 1: CAM Core Signals

Port Name Direction Description

CLK Input Clock: All CAM operations are synchronous
to the rising-edge of the clock input.

EN (Optional) Input Enable: This is the control signal used to
enable both write and read operations.

DIN[m(1):0] Input Data In: This is the data to be written to the
CAM during a write operation. It is also the
data to look up from the CAM during a read
operation when simultaneous read/write
option is not selected.

DATA_MASK[m:0] (Optional) Input Data Mask: This signal interacts with the DIN
bus to create new bit values in ternary mode.

CMP_DIN[m:0] (Optional) Input Compare Data In: This is the data to look up
from the CAM during a read operation if the
simultaneous read/write option is selected.

X1151_01_010511

DIN[m:0]

WR_ADDR[log2n:0]

DATA_MASK[m:0]

CMP_DIN[m:0]

CMP_DATA_MASK[m:0]

CLK

EN

WE

MATCH_ADDR[j:0]

MULTIPLE_MATCH

SINGLE_MATCH

MATCH

BUSY

READ_WARNING

http://www.xilinx.com

Interface

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 3

The CAM core signals are discussed in more detail here:

• CLK (Clock): The CAM module is fully synchronous with the rising edge of the clock input.
All input pins have the setup time referenced to the CLK signal. All output ports have
clock-to-out times referenced to the CLK signal.

• EN (Enable): When active, the optional enable signal allows the CAM to execute write and
read operations. If the enable is inactive during normal operation of the core, the output
pins hold their previous state and all internal states freeze. Any new input signal is ignored
until the enable is driven active, at which time the CAM resumes all of its halted
operations.

• DIN[m:0] (Data In Bus): The DIN bus provides the data to be written into or read from the
CAM core, depending on the operation. If the simultaneous read/write option is selected,
this bus is used only for the write operation, and the CMP_DIN bus is used exclusively for
the read operation.

In ternary modes, this bus becomes one of the two input buses used to determine the bit
value. In standard ternary mode, a 0 on both DIN and DATA_MASK designates a 0. A 1 on
DIN and a 0 on DATA_MASK designates a 1. A 0 or a 1 on DIN and a 1 on DATA_MASK
designates an X.

CMP_DATA_MASK[m:0]
(Optional)

Input Compare Data Mask: This bus interacts with
the CMP_DIN bus to create new bit values in
ternary mode if the simultaneous read/write
option is selected.

WE (Optional) Input Write Enable: This is the control signal used
to enable transfer of data into the CAM from
the DIN bus.

WR_ADDR[log2n(2):0] Input Write Address: This is the location to which
the data on DIN is written into the CAM.

BUSY Output Busy: This signal Indicates that a write
operation is currently being executed.

MATCH_ADDR[j:0] Output Match Address: This is the CAM address
where matching data resides.

MATCH Output Match: This signal indicates that at least one
location in the CAM contains the same data
as the DIN bus (or CMP_DIN if in
simultaneous read/write mode).

MULTIPLE_MATCH (Optional) Output Multiple Match: This signal indicates the
existence of matching data in more than one
location of the CAM.

SINGLE_MATCH (Optional) Output Single Match: This signal indicates the
existence of matching data in only one
location of the CAM.

READ_WARNING (Optional) Output Read Warning: This signal indicates that the
data applied to the CAM for a read operation
matches the data that is currently being
written into the CAM by the unfinished write
operation.

Notes:
1. m = CAM width.
2. n = CAM depth.

Table 1: CAM Core Signals (Cont’d)

Port Name Direction Description

http://www.xilinx.com

Interface

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 4

In enhanced ternary mode, a 0 on both DIN and DATA_MASK designates an X. A 1 on both
buses designates a U. A 1 on DIN and a 0 on DATA_MASK designates a 1. A 0 on DIN and
a 1 on DATA_MASK designates a 0.

• DATA_MASK[m:0] (Data In Mask Bus): This optional input bus is available when one of
the ternary modes is selected. In standard ternary mode, this signal masks the DIN bus to
create the don’t care bits. Bits that are 1 on DATA_MASK indicate the locations of the don’t
care bits on the DIN bus.

In ternary modes, this signal becomes one of the two input buses used to determine the bit
value. For further information, see the description of the DIN bus defined earlier in this
section. In this application note, the DATA_MASK bus is treated as part of the DIN bus
when a ternary CAM is selected.

• CMP_DIN[m:0] (Compare Data In Bus): When the simultaneous read/write option is
selected, this optional input bus provides the data for the read operation of the CAM.
When the simultaneous read/write option is not selected, this bus is not available.

In ternary modes, this bus becomes one of the two input buses used to determine the bit
value during a read operation. For further information, see the description of DIN bus
defined earlier in this section.

• CMP_DATA_MASK[m:0] (Compare Data Mask): This optional input bus is available
when the CAM core is configured to support both simultaneous read and write operations
and ternary mode. In standard ternary mode, this signal masks the CMP_DIN bus to
create don’t care bits. Bits that are 1 on this bus indicate the locations of don’t care bits on
the CMP_DIN bus.

In ternary modes, this bus becomes one of the two input buses used to determine the bit
value. For more information, see the descriptions of the DIN and DATA_MASK buses
defined earlier in this section. In this application note, the CMP_DATA_MASK bus is treated
as part of the CMP_DIN bus when a ternary CAM is selected.

• WE (Write Enable): The optional write enable signal allows data on the DIN bus to be
written into the CAM. When this signal is asserted, the contents on the DIN bus are written
into the location selected by the write address bus WR_ADDR. This signal is not present if
the read-only CAM option is selected. This signal is optional when the CAM initialization
option is selected.

• WR_ADDR[log2n:0] (Write Address Bus): The optional write address bus determines
the memory location to be written to during the CAM’s write operation. This bus is not
present if the read-only CAM option is selected. This bus is optional when the CAM
initialization option is selected.

• BUSY (Busy): The busy signal indicates that the write operation is currently being
executed. It remains asserted until the multiple clock cycle write operation is completed. A
new write operation cannot be started while this signal is active.

• MATCH_ADDR[j:0] (Match Address Bus): This output bus indicates the address that
matches the contents of the DIN bus, or the CMP_DIN bus if the simultaneous read/write
option is selected. The match address can be encoded (binary), single-match unencoded
(one-hot), or multiple-match unencoded. The width j depends on the encoding type
selected.

• MATCH (Match): The match signal is asserted for one clock cycle when data on the DIN
bus matches data in one or more locations in the CAM. If the simultaneous read/write
option is selected, data on the CMP_DIN bus is used to search for a match instead of the
DIN bus.

• READ_WARNING (Read Warning): The optional read warning signal is asserted when
data for the write in progress of the CAM is the same as data for the read initiated for the
CAM. Because write operations take multiple cycles, writes performed prior to reads might
not have been completed when the read is executed. READ_WARNING is asserted to let
the user know that the match address and match signals do not reflect the results of the
most recent write operation being executed.

http://www.xilinx.com

Functional Description

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 5

• MULTIPLE_MATCH (Multiple Match): The optional multiple match signal is asserted for
one clock cycle when more than one match is present in the CAM. It remains inactive if
there is one or no matches.

• SINGLE_MATCH (Single Match): The optional single match signal is asserted for one
clock cycle when there is only one match in the CAM. This signal remains inactive if there
is more than one match, or if there are no matches.

Functional
Description

Operating Modes

The CAM has two operating modes: read operation and write operation.

Read Operation

The read operation of the CAM is synchronous to the rising edge of the clock. In a read
operation, the CAM’s contents are searched for the data present on the DIN bus or the
CMP_DIN bus (if the simultaneous read/write option is selected) at the rising edge of the clock.
The enable (EN) signal must be asserted for the entire duration of the read operation.

If a read operation is applied to the CAM while the busy signal is asserted (which means a write
operation is still being executed), the CAM location currently being written into appears to be
empty. This location does not match any data that the user places on the DIN or CMP_DIN bus
for the read operation. If the user applies both read and write operations on the same rising
edge of the clock, the write operation starts its execution before the read operation, meaning
that write addresses in the CAM are cleared before the CAM is searched for a read match.

The match address bus behaves differently, depending on the selections made in the
CustomizeWrapper.pl script. If there is one match in the core, multi-match unencoded and
single-match unencoded behave identically by setting the bit corresponding to the location of
that match in the MATCH_ADDR bus active. Similarly, the binary encoded MATCH_ADDR
contains the encoded version of the active bits. When there are multiple matches in the core,
single-match unencoded and binary encoded returns the match of the highest priority location,
which can be selected as the lowest or highest address. Multi-match unencoded has every bit
corresponding to the location of the matches in the MATCH_ADDR bus active.

Write Operation

The write operation for the CAM is synchronous to the rising edge of the clock. The data on the
DIN port is written into the memory location selected by the WR_ADDR port when both WE and
EN signals are active. The WE signal is required to be asserted for the initial clock cycle of the
write operation applied to the CAM by the user.

On the first clock cycle of a write operation, the old data at the WR_ADDR location is removed
from the memory, and on the last clock cycle of a write operation, new data is written to the
same location in the memory. During the first and middle clock cycles of a write operation, the
memory location being written to behaves as an empty memory location.

During a write operation, the enable signal must remain active for the entire write cycle. If
enable is deactivated at any time during the write operation, the write cycle stops and remains
at that stage until enable is activated again.

Block RAM-Based Implementation

A CAM implemented with block SelectRAM™ memory primitives has a single clock cycle
latency on its read operation, and two clock cycle latency on its write operation.

Read Operation

Figure 2 shows consecutive read operations of a block SelectRAM memory CAM with the
second operation not having a match. Three of the possible configurations for the
MATCH_ADDR and MATCH signals are displayed. On the second rising edge of CLK, a read of

http://www.xilinx.com

Functional Description

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 6

data 01 is performed. On the third rising edge of CLK, a MATCH is reported at MATCH_ADDR
01 (unencoded), or MATCH_ADDR 00 (encoded), for the input data 01. At the same time,
another read is performed for the data 11. On the fourth rising edge of CLK, no MATCH is
reported for the input data of 11. The remaining CLK edges show multiple reads of the input
data 10, with the CAM core reporting a MATCH for this data at MATCH_ADDR 10
(unencoded), or MATCH_ADDR 01 (encoded).

By default, the block SelectRAM memory CAM has a single-clock read latency. However, an
extra clock cycle can be added to the read latency by selecting the Register Outputs option in
the CustomizeWrapper.pl script. New data written into the CAM is available to be read on
the second rising edge of the clock after a write operation begins.

Write Operation

Figure 3 shows three consecutive write operations of a block SelectRAM memory CAM with the
simultaneous read/write option enabled. The figure also shows when the new data is available
to be read by the read operation. The block SelectRAM Memory CAM has a two clock cycle
write latency. When executing consecutive write operations, each write operation must be two
clock cycles apart.

The following describes the events shown in Figure 3:

1. A write of data 01 to WR_ADDR of 00 is performed on the second rising edge of CLK. On
the same CLK edge, a read of the same data 01 is attempted. Because the write operation
takes precedence, no MATCH is reported for the read of data 01 on the next CLK cycle.

X-Ref Target - Figure 2

Figure 2: Block SelectRAM Memory Read Operation

X1151_02_122110

CLK

EN

DIN

MATCH

MATCH_ADDR
(Unencoded)

01

01 10

MATCH

MATCH_ADDR
(Encoded)

00 01

MATCH

MATCH_ADDR
(Unencoded)

01 10

11 10

Unencoded Match
Address Option Selected

Encoded Match
Address Option Selected

Registered Output
Option Selected

X-Ref Target - Figure 3

Figure 3: Block SelectRAM Memory Write Operation

X1151_03_011111

CLK

EN

WE

DIN

BUSY

CMP_DIN

MATCH

10 10 10 1111

MATCH_ADDR
(Encoded)

01 10

If Simultaneous
Read/Write
Option is
 Selected

01 10 11

WR_ADDR 00 01 10

01

http://www.xilinx.com

Functional Description

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 7

2. On the third rising edge of CLK, the BUSY signal is asserted, indicating a write is in
progress (from the previous clock cycle) and no write operation can occur.

3. The fourth rising edge of CLK shows a write of data 10 to WR_ADDR 01, with a read
attempted on CMP_DIN of the same data at the same time. Again, no MATCH is reported
for the read of data 10 on the next cycle.

4. The fifth rising edge of CLK shows another read attempt of data 10, with no MATCH
reported the next clock cycle because the write operation from the previous cycle is still in
progress.

5. On the sixth rising edge of CLK, a write of data 11 is performed to WR_ADDR 10. At the
same time, a third read attempt of data 10 is performed. This time, a MATCH for the read
data is reported on the next clock edge because the simultaneous write was not the same
data that was read.

6. The seventh rising edge of CLK shows a read attempt of data 11. Because the write
operation for the same data is still in progress (BUSY is asserted), no MATCH is reported.

7. On the eighth rising edge of CLK, a read is again attempted of data 11. This time, a MATCH
is reported on the next clock edge at MATCH_ADDR 10.

SRL16E-Based Implementation

A CAM implemented with SRL16E primitives has a single clock cycle latency on its read
operation and 16 clock cycle latency on its write operation.

Read Operation

Figure 4 illustrates three consecutive read operations of an SRL16E-based CAM with the
second operation not having a match. Two of the possible configurations for the MATCH_ADDR
and MATCH signals are displayed.

The SRL16E-based CAM asserts the MATCH signal on the first rising clock edge after data is
placed on the DIN bus by the user if there is at least one location in the CAM with matching
data. New data written into the CAM is available to be read on the 17th rising edge of the clock
after write operation begins.

Write Operation

Figure 5 shows two consecutive write operations of an SRL16E-based CAM. The figure also
shows when the new data is available to be read by the read operation. The SRL16E-based
CAM has a 16 clock cycle write latency. When executing consecutive write operations, each
write operation must be 16 clock cycles apart.

On CLK edge 1, the data 01 is written to address 00. Beginning on CLK edge 2, a read attempt
of the same data 01 is begun. No MATCH for this data is reported until CLK edge 17 because
it takes 16 clock cycles for the write to complete. The MATCH for the read data is reported on
CLK edge 17 with an unencoded MATCH_ADDR of 0001. The original WR_ADDR was 00

X-Ref Target - Figure 4

Figure 4: SRL16E Read Operation

X1151_04_011111

CLK

EN

DIN

MATCH

MATCH_ADDR
(Unencoded)

01

01 10

MATCH

MATCH_ADDR
(Encoded)

0 1

11 10

Unencoded Match
Address Option Selected

Encoded Match
Address Option Selected

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 8

(binary). Because this is the first address index of the CAM, the unencoded (one-hot)
MATCH_ADDR for that location is 0001.

When writing and reading the CAM, two ternary mode options are supported using ternary bits
0, 1, X, and optionally U:

• Standard ternary mode: In this mode, bit X matches either 1, 0, or X (1010 = 1X1X =
10XX) and is referred to as a don’t care bit. This example shows how to write and search
for ternary values (Xs):

• To write 1X1X, DIN = 1010, 1110, 1011, or 1111 and DATA_MASK = 0101.

• To search for 1X1X, DIN and DATA_MASK use the same values as above.

Note: If the CAM already has a ternary value written to it, that ternary bit (X) matches 0, 1, and
X in the input buses.

• Enhanced Ternary Mode: In this mode, bit X also matches either 1, 0, or X (1010 = 1X1X
= 10XX) and is also referred to as a don’t care bit. Bit U does not match any of the four
possible bit values 1, 0, X, or U, and is referred to as an unmatchable bit.

Hardware
Implementation

General Overview

The CAM design uses the same FPGA memory blocks as a traditional memory, but there are
key differences between the two. For a traditional memory, the user provides the input data and
address for a write operation. For a read operation, an address is provided, and the data stored
at that address is read out. For a CAM, the write operation is the same as traditional memory.
However, the read operation differs in that the user provides a data input to look up the address
where that data is stored.

Just as a traditional memory only stores one data word at each address, each CAM address
can only store one unique data. However, a particular data can be stored at multiple addresses.

To accomplish this functionality, a number of functional blocks are required in addition to the
standard memory (SRL16E or block RAM) blocks. Before reading or writing to the memory, the
CAM must process the input data and address to map to the appropriate memory block, and
perform certain operations like ternary encoding, if required. At the memory output, the CAM
must interpret which address(es) contain the data, generate the MATCH flags, and register the
outputs. All of these functions are managed by a control block. The basic data flow through
each block in the CAM is shown in Figure 6.

X-Ref Target - Figure 5

Figure 5: SRL16E Write Operation

X1151_05_011111

CLK

EN

WE

DIN

BUSY

CMP_DIN

MATCH

MATCH_ADDR
(Unencoded)

00

01

If Simultaneous
Read/Write Option
is Selected

01

0 1 2

01

11

0001

15 163

WR_ADDR

01

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 9

RAM-Based Implementation

Introduction

When using RAM for the CAM implementation, the block memory behaves like a large grid
where each element in the grid represents a particular mapping of a CAM address to a
particular data value. In other words, every possible data/address combination is represented
by one RAM bit. A simple example of an 8 x 3 (n = 8 words deep, m = 3 bits wide) CAM is shown
in Table 2.

A CAM whose data input is m bits wide requires a memory that is 2m deep to accommodate all
2m possible values of that data input. An 8 x 3 (n x m) CAM therefore requires a RAM that is
23 = 8 words deep. This same CAM requires a RAM of width n = 8 to accommodate 8 possible
address values. To summarize, a CAM that is m data input bits wide requires a memory that is
2m deep, and a CAM that has n addresses requires a memory that is n bits wide.

Each row in the RAM shown in Table 2 represents one possible mapping of the input data bits
to the CAM contents. A CAM with a 3-bit data input has 8 possible unique data bit combinations
and thus requires 8 rows (or “words”) in a RAM (in other words, the required CAM depth is 8).
Similarly, a CAM with a depth of 8 addresses requires 8 columns (or data bits) in the RAM. If the
CAM had a depth of 16 addresses, 16 columns would be required.

X-Ref Target - Figure 6

Figure 6: CAM Data Flow

X1151_06_100610

Ternary
Encode
(SRL)

Erase Memory
(Block RAM)

Ternary
Input (SRL)

Input

Memory
(Block RAM

or SRL)

Control

Match
Encode

Register
Outputs

Decoder
(SRL)

Table 2: RAM Match Grid

RAM Data/CAM Address

RAM
Address/

CAM
Data

0 1 2 3 4 5 6 7

000 0 1 0 0 0 0 0 0

001 0 0 0 0 0 1 0 0

010 0 0 0 0 0 0 0 0

011 0 0 0 1 0 0 0 0

100 1 0 0 0 0 0 0 1

101 0 0 0 0 0 0 0 0

110 0 0 1 0 0 0 0 0

111 0 0 0 0 0 0 0 0

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 10

The value or bit at each grid location is set to 1 if the data is stored at that address; otherwise,
it is set to 0. The example in Table 2 shows a CAM that already has data stored within it, either
by writing to the CAM or by using a MIF file to initialize the contents during implementation (see
Creating a MIF File (Specifying CAM Contents), page 27.These are the contents of the CAM
described in Table 2:

• CAM data 000 is stored at address 1.

• CAM data 001 is stored at address 5.

• CAM data 011 is stored at address 3.

• CAM data 100 is stored at address 0 and 7.

• CAM data 110 is stored at address 2.

• CAM data 010, 111, and 101 is not stored at any addresses.

• CAM addresses 4 and 6 do not store any data.

As discussed in General Overview, page 8, a single data can be stored at multiple addresses,
but a single address can only store a single data value.

Write Operation Overview

The design for the two clock cycle write operation is from Using Block RAM for High
Performance Read/Write CAMs [Ref 1]. The first clock cycle is the erase operation, which
removes the data previously stored at the write address by clearing the bit at that location in the
grid. The second cycle performs the write, setting to 1 the bit at the intersection of the address
and data being written.

The initial erase cycle before the write is necessary to avoid the scenario of multiple data at the
same address. Using Table 2 as an example, consider that address 7 previously had data 100
and the new data 010 needs to be written to this address. The intersection of 100 and the
address currently has a 1. If this is not erased, after writing data 010, the intersection of data
010 and this address will also have a 1, indicating the impossible scenario of both data 100
and 010 at this address.

Read Operation Overview

The read operation reads the CAM address bits from the memory stored under the input read
data. The output represents one bit for each possible address. For every location that contains
or matches the data that is presented, this bit is set to 1. If a match is found, the MATCH flag is
asserted and the matching address is presented on the MATCH_ADDR port.

It is possible for more than one 1 to exist in the bits read from the memory. If this occurs, the
data that is being searched is stored at more than one address. If the MULTIPLE_MATCH flag
option is enabled, the flag is asserted.

Initialization

A text file with the MIF extension is used to initialize the block RAM primitives. The contents of
this file are in binary form and are parsed into CAM data-width words in multiple stages in the
RTL. Initialization is explained in detail within the VHDL code itself.

Basic CAM Configurations Using Block RAM Primitives (Virtex-6 FPGAs)

Many different CAM configurations are possible using a dual-port block RAM, depending on the
size of the block RAM primitive available in the FPGA. In a Virtex-6 device, the RAMB36 has
32 Kbits of memory available for a CAM. Using this available space, a 32 x 10 CAM is the most
efficient CAM primitive that can be built from a single RAMB36 block RAM. The sizing and
connections for each port of the block RAM for this size CAM are shown in Figure 7. Port A of
the block RAM is used for writes (if enabled), and port B is used for reads.

Note: The Virtex-6/Virtex-6L FPGA case using RAMB36 primitives is provided as an example.
Virtex-5 devices also contain RAMB36 primitives, so larger CAMs are built in the same way as in

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 11

Virtex-6 devices, with multiple blocks of 32 x 10 CAMs. Spartan-6, Spartan-3, and Virtex-4 devices
contain RAMB18 or RAMB16 primitives. Larger CAMs for these devices use multiple blocks of 32 x 9
CAMs.

Larger CAM Depths and Widths

To achieve deeper and wider CAMs, multiple 32 x 10 CAM blocks are concatenated in width
and depth, respectively.

Deeper CAMs

To achieve a CAM depth greater than 32 words, multiple basic CAM blocks are combined in
parallel. Figure 8 shows the configuration of the basic CAM for this purpose. The CAM size
shown in Figure 8 is 128 bits deep by 10 bits wide.

Wider CAMs

To achieve a CAM width greater than 10 bits wide for Virtex-6 FPGAs, multiple basic CAM block
outputs are combined using AND gates. Figure 9 shows the configuration of the basic CAM for
this purpose. The AND gates on each MATCH bit output are required because a match here is
defined as both the lower data bits AND the upper data bits matching the read input on the
same address. The CAM size shown in Figure 9 is 32 bits deep by 20 bits wide.

X-Ref Target - Figure 7

Figure 7: RAMB36 Connection for 32 x 10 CAM

X-Ref Target - Figure 8

Figure 8: CAM Depth Expansion (128 x 10 CAM)

X1151_07_010511

DIN[0:0]
1 or 0

ADDR[14:0]

PORT A
32K x 1

RAMB36

{DIN[9:0], WR_ADDR[4:0]}

ADDR[9:0] DOUT[31:0]
CMP_DIN[9:0] PORT B

1024 x 32
MATCH_ADDR[31:0]

X1151_08_100610

CAM 32 x 10

CAM 32 x 10

CAM 32 x 10

CAM 32 x 10

10

10

10

10

DIN[9:0]

[31:0]

[63:32]

[95:64]

[127:96]

CLK

MATCH[127:0]

32

64

96

128

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 12

Read Implementation

For a simple CAM using a single block RAM primitive, the read data is presented on the
address input of port B (ADDRB) of the block RAM. For a more complex CAM using multiple
block RAM primitives, all port Bs of the block memory are addressed by the CAM read data
(DIN or CMP_DIN[9:0] in Figure 10). Figure 10 shows the logic connection for a CAM using
more than one block RAM primitive (the CAM size shown in Figure 10 is 64 bits deep by 20 bits
wide). The output of the block RAM is a series of 1s and 0s that indicate the address(es) which
that data matches. The match logic uses this information to calculate how many CAM
addresses matched the data, and the lowest/highest address that matched.

Note: If the simultaneous read/write option (parameter c_has_cmp_din) is selected, CMP_DIN provides
the read address (ADDRB) to the read port and the DIN bus is used for write data; otherwise, the DIN
input bus is connected to ADDRB.

X-Ref Target - Figure 9

Figure 9: CAM Width Expansion (32 x 20 CAM)

X1151_09_100610

CAM 32 x 10

CAM 32 x 10
DIN[19:0]

[9:0]

[19:10]

[31:0]

[31:0]

[0]

[0]

CLK

[1]

[1]

[31]

[31]

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 13

Erase/Write Implementation

As described in Write Operation Overview, page 10, the write operation is performed in two
clock cycles: the erase cycle and the write cycle. Figure 11 shows the write logic to implement
this. On the first clock cycle, the previous contents of the memory location are erased. On the
second clock cycle, the new contents are written to the memory location.

As shown in Figure 11, the DIN data input of the CAM passes through a distributed RAM block
called the Erase RAM. The data input also bypasses the Erase RAM and is used as an input to
a multiplexer. The multiplexer selects between the DIN input and the DOUT output of the Erase
RAM.

For a write operation, the data currently stored at the write address must be erased. During the
first clock cycle, the value from the RAM ERASE memory is read combinatorially from the
specified address. The data accessed from this RAM is the last data stored in the CAM at that
address. The write/erase signal is then cleared to 0, and the output of the erase RAM is
combined with the address and used to index a single bit in the block RAM. That location is
then cleared to 0. This effectively removes the previous data stored at that address.

On the second clock cycle, the new data and address input is passed through directly to the
block memory. At the new data/address location specified, a 1 is written by setting a 1 on the
write/erase input shown in Figure 11. On the same clock cycle, the data is also stored in the
RAM Erase memory in preparation for the next erase cycle. The basic implementation of this
logic for a 32 x 10 CAM is shown in Figure 11. The Erase RAM size is always the same width
and depth as the CAM core.

X-Ref Target - Figure 10

Figure 10: CAM Width and Depth Expansion (64 x 20 CAM)

X1151_10_011111

Block Memory - Port B
1024 Deep x 32 Wide

DIN or CMP_DIN[9:0] match_addr[31:0]

match_addr[63:32] match_addr

multiple_match
Match
Logic

CLK

ENB
en

clk

ADDRB DOUTB

single_match

match

en

clk

Block Memory - Port B
1024 Deep x 32 Wide

CLK

ENB

ADDRB DOUTB

Block Memory - Port B
1024 Deep x 32 Wide

DIN or CMP_DIN[19:10] match_addr[31:0]

match_addr[63:32]

CLK

ENB
en

clk

ADDRB DOUTB

en

clk

Block Memory - Port B
1024 Deep x 32 Wide

CLK

ENB

ADDRB DOUTB

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 14

SRL16E-Based Implementation

Introduction

Using an SRL16E as a CAM is in most ways the same as using a block RAM as a CAM. The
SRL16E can be thought of as a 16-bit deep by 1-bit wide RAM, which translates into a 4-bit
wide by 1-bit deep CAM. Because one SRL16E produces a CAM of 1 address deep, each
SRL16E can only store one matchable data value. Table 3 shows an example in which the data
value 0110 is stored in the single address space represented by this particular SRL16E block.

X-Ref Target - Figure 11

Figure 11: CAM Core with Erase RAM Connection

X1151_11_010511

write/erase
(From Control Logic)

 User WE
(2 Cycles Extended)

User EN

User CLK

User DIN[9:0]

User WR_ADDR[4:0]

write/erase_BAR

CLK

EN

Write/Erase

0

0

Write Port A
1 Bit Wide x 32K Deep

10 Bits Wide x
32 Words Deep

RAMB36

ADDRA

WEA

DINA

CLKA

SSRA

REGCEA

ENA

Erase RAM
(Distributed RAM)

ADDR

WE

DIN DOUT

CLK

EN

DOUTA

0s

User CMP_DIN / DIN

0s

User EN

User CLK

0

0

Write Port B
32 Bits Wide x
1024 Bits Deep

ADDRB

WEB

DINB

CLKB

SSRB

REGCEB

ENB

DOUTB

MULTI_MATCH

SINGLE_MATCH

MATCH

MATCH_ADDR

Match
Logic

1

0

0

1

Table 3: SRL CAM Storage

CAM Data
(SRL Address) Match?

0000 0

0001 0

0010 0

0011 0

0100 0

0101 0

0110 1

0111 0

1000 0

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 15

Write Operation

As a shift register, an SRL16E is written by shifting data in one bit at a time. Because an
SRL16E contains 16 bits of data, a write operation takes 16 cycles to complete.

In an SRL16E implementation, each bit of the SRL16E is used to encode 4 bits of input data
with a depth of 1 word. Because each SRL16E represents one address space, only one bit in
each of the SRL16E can be a 1 at any time. Thus, a write to the SRL16E must rewrite all 16 bits
to ensure that only one match is present. If the input data matches the index of one of the words
in the SRL16E, a 1 is written into the SRL16E; otherwise, a 0 is written. Because any previous
match data stored in the SRL16E must be overwritten with the new data, all 16 bits of the
SRL16E must be shifted out by writing 16 bits of new data. Therefore, a write operation always
takes 16 clock cycles.

Read Operation

For a read, the read data is placed on the address lines of the SRL16E. If a 1 is stored at that
address, the data presented is stored at the single address space represented by that SRL16E,
and thus a match occurs. Because there is only one 1 bit stored in the SRL16E at a time, the
match signal is active only when the location addressed by the input data contains a 1. The
read from the SRL16E takes one clock cycle.

Initialization

A text file with a .mif extension is used to initialize the SRL16Es. The contents of the file are
parsed into CAM data-width words. These words are then encoded, 4 bits at a time, into the
16-bit value to be stored in each SRL16E.

Building Wider and Deeper CAMs using SRL16E primitives

Implementing a CAM using SRL16s makes use of many components found within each FPGA
slice. As shown in Figure 12, an 8 x 1 CAM is built using two SRL16E primitives and the
MUXCYs located in the slice. Adding more SRL16E/MUXCY pairs allows for extension of the
CAM width.

1001 0

1010 0

1011 0

1100 0

1101 0

1110 0

1111 0

Table 3: SRL CAM Storage (Cont’d)

CAM Data
(SRL Address) Match?

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 16

To extend the depth of a CAM built with SRL16Es, each group of 4 input data bits must connect
to multiple SRL16Es in parallel. The WR_ADDR input is decoded to one-hot form to drive the
individual write enables of each SRL16E. Each Q output of the SRL16Es creates a MATCHES
bus that is passed to the Match Encoder block for processing. Figure 13 shows an example of
this for a 4-bit wide by 3-bit deep CAM.

Details of Read Implementation

For a read, the input data is the address of the SRL16E as shown in Figure 14. If the content of
the SRL16E at the address is 1, there is a match. The output of the SRL16E is used to select
either a 1 or 0 using the select line of a MUXCY. This effectively uses the multiplexer as an AND

X-Ref Target - Figure 12

Figure 12: 8-Bit Wide by 1-Bit Deep CAM in FPGA Slice

X1151_12_010511

SRL16E

Comparator

A[3:0]

DIN MUXCYQ

CE

SRL16E

A[3:0]

DIN Q

CE

DIN/CMP_DIN[7:0]
WORD_MATCH

WORD_WE

[0]

[1]

[3:0]

[7:4]

10

MUXCY
10

Counter

WRITE_DATA[7:0]

X-Ref Target - Figure 13

Figure 13: 4-Bit Wide by 3-Bit Deep CAM Using SRL16E

X1151_13_100610

WORD_WR

SRL16E

DECODE

ENCODE

SRL16E SRL16E

ADDR

WE

DIN

MATCHES[2:0]

MATCH

MATCH_ADDR
CLK

CMP_DIN (Optional)

WR_ADDR

3

2
1 1 1

CLK CLK CLK

CLK

1

1

1

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 17

gate that is disabled during a write. The value out of the last MUXCY indicates whether or not
there was a match of the input data on this 8-bit word.

Note: With WE connected to the input of MUXCY, the user is able to read while waiting for a write
operation to finish. Therefore, the address being written to is not included in the match operation because
the read and write can occur simultaneously.

Details of Write Implementation

The CAM address is decoded into a one-hot write enable bus that enables each CAM word for
writing (Figure 15). It takes 16 clock cycles to shift in the result of the comparator into the
SRL16E. The data input is compared with the value of the counter. When a match occurs, a 1
is shifted into the SRL16E. If there is no match, a 0 is shifted in. Each SRL16E has its own
comparator to determine when to write a 1; this allows all SRL16s that make up one CAM
address space to be written in parallel.

X-Ref Target - Figure 14

Figure 14: 8-Bit Wide by 1-Bit Deep CAM Read Operation

X1151_14_100610

A[0:3]

CMP_DIN/DIN[7:0]

CMP_DIN/DIN[7:4]
A[0:3]

A[0:3]

CMP_DIN / DIN(3:0)
A[0:3]

Q

Q

Q

Q

MATCH[1]

MATCH[0]

WE

SRL16E

SRL16E

SRL16E

SRL16E

10
S

10
S

WE

10
S

10
S

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 18

The timing diagram for a typical write operation is shown in Figure 16. The WR_ADDR and DIN
inputs are always used in a write operation. After WE is asserted, a write operation takes 16
rising clock edges to complete. The BUSY flag is asserted after a write operation has begun,
and is deasserted on completion of the write operation. Whenever BUSY is Low, a write
operation can begin on the next rising edge of the clock.

The WE input is ignored while BUSY is High. This means that it is impossible to interrupt a write
operation after it has begun. Figure 17 demonstrates this. The behavior in this case is identical
to that in Figure 16. Because of this feature, WE can remain High and a new write operation
can begin immediately after this one concludes.

X-Ref Target - Figure 15

Figure 15: 8-Bit CAM Word Write Operation (16 Clock Cycles)

X-Ref Target - Figure 16

Figure 16: Timing Diagram for Write Operation

X-Ref Target - Figure 17

Figure 17: Timing Diagram for Write Operation with WE Held High

X1151_15_100610

WR_DATA

EN

WORD_WE

MSB D Q

CE

4-Bit
Compare

SRL16E

Reconfigurable 8-Bit
Word Comparator

1 Virtex FPGA Slice

LUT

4-Bit
Compare

Counter

4

4

8

LSB 4 D Q

CE

SRL16E

LUT

X1151_16_100610

CLK

EN

WE

WR_ADDR

BUSY

DIN

10

0001

X1151_17_100610

CLK

EN

WE

WR_ADDR

BUSY

DIN

10

0001

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 19

Like WE, the WR_ADDR and DIN values are stored internally, so they too are ignored after a
write operation has begun. Therefore, Figure 18 shows a third scenario that would produce
identical results to Figure 16 and Figure 17. Because DIN can change after the write operation
has begun, DIN can be used to read from the CAM while the write operation is in progress.

Ternary Modes

A CAM with ternary modes enabled allows the use of X and U values in the CAM. Because
more input combinations must be supported, the largest ternary CAM that can be implemented
in a single SRL16E is smaller than for a non-ternary CAM. Standard ternary mode allows each
bit to be in one of three states: 0, 1, and X. Each data bit in an enhanced ternary mode CAM
can be in one of four states: 0, 1, X, and U. These values are encoded at the ternary CAM input
using a combination of data bits (0 or 1) and mask bits (0 or 1).

For a 4-bit wide by 1-word deep non-ternary CAM, a single SRL16E can be used to store 4 bits
of data at a single address. For ternary modes, a two-bit data input in combination with the
two-bit mask value is encoded as a 4-bit word (see Table 4 and Table 5). This means that a
single SRL16E can only be used to build a 2-bit wide by 1-word deep ternary mode CAM.
Furthermore, unlike the non-ternary CAMs that can only represent a single 1 (or match) value
in each CAM address location (i.e., each SRL16E), each ternary CAM address location can
represent multiple input data matches. This is because a data input of 1X, for example, can
match multiple two-bit values (10 and 11 in this case). The ternary mode CAM (using
SRL16Es) performs both ternary reads and ternary writes.

Standard Ternary Encoder

The ternary encoder outputs four bits. Each of these four bits indicates whether or not a
particular 2-bit encoded value can match the 2-bit ternary value being input. For example, for a
ternary CAM implemented in a single SRL16E, the A bit is High (logic 1) whenever the ternary
value can match 00. The ternary values that match 00 would be 00, 0X, X0, and XX.

Note: Ternary CAMs do not use all the possible addresses in an SRL16E.

The ternary encoder map is shown in Table 4.

X-Ref Target - Figure 18

Figure 18: Timing Diagram for Write Operation with Changing WR_ADDR and DIN

X1151_18_100610

CLK

EN

WE

WR_ADDR

BUSY

DIN

10

0001

XX

XXXX

Table 4: Standard Ternary Encoder Mapping

Input Output (Address Inputs to SRL16E)

Ternary Value Data Input (d1d0) Data Mask
(m1m0) A (00) B (01) C (10) D (11) ABCD

(Addr[3:0])

00 00 00 1 0 0 0 1000

01 01 00 0 1 0 0 0100

0X 00,01 01 1 1 0 0 1100

10 10 00 0 0 1 0 0010

11 11 00 0 0 0 1 0001

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 20

The standard ternary encoder is built using these equations.

Equation 1

Equation 2

Equation 3

Equation 4

Enhanced Ternary Encoder

The ternary encoder outputs four bits. Each of these four bits indicates whether or not a
particular 2-bit encoded value matches the 2-bit enhanced ternary value being input. For
example, the A bit is High (logic 1) whenever the ternary value can match 00. Any input with a
value of U is mapped to SRL16E address 0000, and this address is never set to 1 because it
is defined as unmatchable.

The enhanced ternary encoder map is shown in Table 5.

1X 10,11 01 0 0 1 1 0011

X0 00,10 10 1 0 1 0 1010

X1 01,11 10 0 1 0 1 0101

XX 00, 01, 10, 11 11 1 1 1 1 1111

Table 4: Standard Ternary Encoder Mapping (Cont’d)

Input Output (Address Inputs to SRL16E)

A d1d0 m1m0 d1m0 d0m1+ + +=

B d1d0 m1m0 d1m0 d0m1+ + +=

C d1d0 m1m0 d1m0 d0m1+ + +=

D d1d0 m1m0 d1m0 d0m1+ + +=

Table 5: Enhanced Ternary Encoder Mapping

Input Output

Ternary Value Data Input (d1d0) Data Mask (m1m0) A (00) B (01) C (10) D (11) ABCD
(Addr[3:0])

00 00 11 1 0 0 0 1000

01 01 10 0 1 0 0 0100

0X 00 10 1 1 0 0 1100

0U 01 11 0 0 0 0 0000

10 10 01 0 0 1 0 0010

11 11 00 0 0 0 1 0001

1X 10 00 0 0 1 1 0011

1U 11 01 0 0 0 0 0000

X0 00 01 1 0 1 0 1010

X1 01 00 0 1 0 1 0101

XX 00 00 1 1 1 1 1111

XU 01 01 0 0 0 0 0000

U0 10 11 0 0 0 0 0000

U1 11 10 0 0 0 0 0000

UX 10 10 0 0 0 0 0000

UU 11 11 0 0 0 0 0000

http://www.xilinx.com

Hardware Implementation

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 21

The enhanced ternary encoder can be built using these equations.

Equation 5

Equation 6

Equation 7

Equation 8

Ternary Write Cycle

Just like a standard SRL16E-based CAM, a ternary CAM write operation is performed in 16
clock cycles. As with the standard CAM, the ternary CAM uses a counter that counts from 15
down to 0, and comparator logic that determines the clock cycles on which to write a 1 or 0 into
the SRL16E. Figure 19 shows an enhanced ternary CAM write operation.

The logic for the comparator is:

Equation 9

The comparator logic compares the value of the counter to the vector ABCD from the ternary
encoder in bitwise fashion and asserts a 1 when there is a match between the two. This
ensures that a value of 1 is set on each data value represented by the SRL16E that is
equivalent to the write input, as shown in Table 4 and Table 5. In Figure 19, the ternary data
input is 1X, which can be represented by a data input of 10 and a data mask of 01–essentially
the vector ABCD = 0011. When either of the two least significant bits of the counter are High
(logic 1), the output bit is asserted. The comparator logic is the same for both standard ternary
and enhanced ternary CAMs—only the encoder differs between the two modes.

Ternary Read Operation

The read operation for a ternary CAM is essentially the same as the standard SRL16E-based
CAM, except for the use of the ternary encoder. As shown in Figure 20, the ternary value (data
Input and data mask) is converted into bits A, B, C, and D. ABCD are used as the address into
the SRL16E. The output of the SRL16E is High (logic 1) if the ternary value (data input and
data mask) are a match with the data stored at the CAM address served by this SRL16E. In this

X-Ref Target - Figure 19

Figure 19: SRL16E Enhanced Ternary Write

A d1d0=

B d1m0=

C d0m1=

D m1m0=

X1151_19_010511

Data Input
A
B

C
D

Data Mask

4-Bit
Counter

SRL16

Ternary
Encoder

0000

ABCD OUT

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
1
1
0
1
1
1
0
1
1
1
0
1
1
1

Ternary
Comparator

Out cnt3 A•() cnt2 B•() cnt1 C•() cnt0 D•()+ + +=

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 22

example, the SRL16E was initially written with a value of 01. Thus, a read of value 01, 0X, X1,
or XX creates a match at the address represented by this SRL16E.This logic is repeated for
each CAM address.

Reference
Design

The reference design files for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=154257.

The reference design checklist is shown in Table 6.

X-Ref Target - Figure 20

Figure 20: SRL16E Standard Ternary Read

X1151_20_010511

Data Input
Match

A
B

C
D

Data Mask

SRL16

Ternary
Encoder

0000

ABCD OUT

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

Table 6: Reference Design Checklist

Parameter Description

General

Developer Name Xilinx

Target Devices (Stepping Level, ES,
Production, Speed Grades)

Spartan-3, Xilinx Automotive (XA) Spartan-3,
Spartan-3E, XA Spartan-3E, Spartan-3A,
Spartan-3A DSP, Spartan-6, Virtex-4, Virtex-5,
and Virtex-6/6L FPGAs

Source Code Provided Yes

Source Code Format VHDL

Design Uses Code/IP from Existing Application
Note, Reference Designs, Third Party, or
CORE Generator™ Software

Yes

Simulation

Functional Simulation Performed Yes

Timing Simulation Performed Yes

Testbench Used for Functional and Timing
Simulations Provided

No

Testbench Format N/A

Simulator Software/Version Used ModelSim, version 6.5d

SPICE/IBIS Simulations No

Implementation

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=154257

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 23

The reference design contains VHDL source code and Perl scripts to customize the design,
synthesize it in XST, and implement it through NGDBuild, MAP, and PAR. Table 7 defines the
reference design source files, and Table 8 defines the scripts, project files, and documentation.

Synthesis Software Tools/Version Used XST, version 13.1

Implementation Software Tools/Versions Used ISE software, version 13.1

Static Timing Analysis Performed No

Hardware Verification

Hardware Verified No

Hardware Platform Used for Verification N/A

Table 7: CAM Design Files

Filename Description

cam_wrapper.vhd This is a customizable VHDL top-level core wrapper
file with a simplified set of 15 generics.

cam_top.vhd This core wrapper file translates the 15 simplified
generics in the top-level wrapper file
(cam_wrapper.vhd) to the full set of 27 generics in
the top-level core file (cam_rtl.vhd).

cam_rtl.vhd This top-level synthesizable core file instantiates all
other submodules and uses an expanded set of
generics.

cam_pkg.vhd This is a package file containing commonly used
constants and functions.(1)

cam_init_file_pack_xst.vhd This file contains procedures for memory
initialization, and reading and writing files.

init.mif This text file contains a CAM-width x CAM-depth
table for initializing the CAM, if applicable.

cam_regouts.vhd This file registers the CAM outputs.

cam_control.vhd This file generates control signals for the CAM,
including an internal write enable and write counter,
and user BUSY and READ_WARNING signals.(1)

cam_match_enc.vhd This file contains the address match logic.

cam_mem.vhd This file instantiates either block RAM or SRL16E
memory based on code customization.

cam_mem_blk.vhd For block RAM-based CAM, this file cascades
multiple block RAM columns into rows for the final
CAM width.(1)

cam_mem_blk_extdepth.vhd For block RAM-based CAM, this file cascades
multiple block RAMs into columns for the final CAM
depth.

cam_mem_blk_extdepth_prim.vhd For block RAM-based CAM, this file instantiates
individual block RAM primitives depending on the
FPGA architecture.(1)

dmem.vhd For block RAM-based CAM, this file infers distributed
memory for the erase RAM.

Table 6: Reference Design Checklist (Cont’d)

Parameter Description

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 24

cam_input.vhd This file registers data input buses and instantiates
ternary encoders for both read and write ports as
necessary.

cam_input_ternary.vhd This file pads the DIN and DATA_MASK inputs and
instantiates the ternary encoder.

cam_input_ternary_ternenc.vhd This file encodes DIN and DATA_MASK input buses
as ternary encoded outputs for storage in memory.

cam_decoder.vhd For SRL16E-based CAM, this file selects which
256-word block to write.

cam_mem_srl16_wrcomp.vhd For SRL16E-based CAM, this is the write
comparator for standard (non-ternary) mode.

cam_mem_srl16_ternwrcomp.vhd For SRL16E-based CAM, this is the write
comparator for ternary mode.

cam_mem_srl16.vhd For SRL16E-based CAM, this file cascades c_width
x 256-word deep blocks up to the final depth of the
CAM, plus comparators and block decoder.

cam_mem_srl16_block.vhd For SRL16E-based CAM, this file cascades multiple
c_width x 1 word deep blocks into blocks of up to 256
words deep.

cam_mem_srl16_block_word.vhd For SRL16E-based CAM, this file instantiates and
cascades SRL16E primitives for c_width x 1 word of
the CAM.(1)

Notes:
1. The HDL source file contains architecture-specific component instantiations and/or coding and might

require modification to support newer architectures than those listed in Table 6, page 22.

Table 8: CAM Documentation and Script Files

Filename Description

README_XAPP1151.txt This file describes the reference design files and script files,
and contains instructions for executing the provided scripts.

CustomizeWrapper.pl This interactive Perl script is used to customize the top-level
core wrapper file cam_wrapper.vhd.

WrapperTemplate.txt This is the template for the customizable VHDL top-level core
wrapper file cam_wrapper.vhd used by the script.

RunXST.pl This Perl script synthesizes the wrapper and source files using
XST.

vhdl_xst.scr This XST script file contains the XST options for synthesis,
including the target part.

vhdl_xst.prj This XST project file contains the relative paths to the
wrappers and source files to be synthesized.

Implement.pl This Perl script runs NGDBuild, MAP, and PAR on the
synthesized netlist.

Table 7: CAM Design Files (Cont’d)

Filename Description

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 25

Figure 21 shows the RTL hierarchy.

Compilation Parameters

The CAM reference design is parameterizable with a set of 15 simplified generics. An
interactive command-line Perl script called CustomizeWrapper.pl is provided to facilitate
configuration of these parameters. This script creates a top-level core wrapper file with the
desired configuration. For additional control over the CAM implementation, the user can
manually edit the 27 complete generics in the top-level core file (cam_rtl.vhd) and
implement the design without the wrapper files (cam_wrapper.vhd and cam_top.vhd).
Table 9 describes the full set of generics present in the top-level core file and the simplified set
present in the top-level core wrapper file.

X-Ref Target - Figure 21

Figure 21: RTL Hierarchy

X1151_21_100610

cam_input

cam_input_ternary

cam_input_ternary_temenc

cam_decoder

cam_mem_srl16_
ternwrcomp

cam_mem_srl16_
wrcomp

cam_regouts

cam_pkg

cam_match_enccam_control

cam_wrapper

cam_top

cam_rtl

cam_mem

cam_mem_srl16

cam_mem_srl16_block

cam_mem_blk_srl16_block_word

dmem

cam_mem_blk

cam_mem_blk_extdepth

cam_mem_blk_extdepth_prim

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 26

Table 9: RTL Parameters

Generic Simplified Generics Description

C_ADDR_TYPE C_ADDR_TYPE 0 = Binary encoded.
1 = Single match
unencoded.
2 = Multi-match
unencoded.

C_CMP_DATA_MASK_WIDTH C_WIDTH Range: 1–512.

C_CMP_DIN_WIDTH C_WIDTH Range: 1–512.

C_DATA_MASK_WIDTH C_WIDTH Range: 1–512.

C_DEPTH C_DEPTH Range: 16–4096.

C_DIN_WIDTH C_WIDTH Range: 1–512.

 C_FAMILY C_FAMILY Allowed values: virtex4,
virtex5, virtex6, virtex6l,
spartan3, spartan3e,
spartan3a,
spartan3adsp,
aspartan3, aspartan3e,
spartan6.

 C_HAS_CMP_DATA_MASK If C_TERNARY_MODE =1 or 2
and C_HAS_CMP_DIN = 1,
set to 1

1 indicates that the
CMP_DATA_MASK port
is present.

 C_HAS_CMP_DIN C_HAS_CMP_DIN 1 indicates that the
CMP_DIN port is
present.

 C_HAS_DATA_MASK If C_TERNARY_MODE =1 or 2,
set to 1

1 indicates that the
DATA_MASK port is
present.

 C_HAS_EN C_HAS_EN 1 indicates that the EN
port is present.

 C_HAS_MULTIPLE_MATCH C_HAS_MULTIPLE_MATCH 1 indicates
MULTIPLE_MATCH
port present.

 C_HAS_READ_WARNING C_HAS_READ_WARNING 1 indicates that the
READ_WARNING port
is present.

 C_HAS_SINGLE_MATCH C_HAS_SINGLE_MATCH 1 indicates that the
SINGLE_MATCH port
is present.

 C_HAS_WE C_HAS_WE 1 indicates that the
CAM is writeable (WE
port present).
0 indicates that it is read
only.

 C_HAS_WR_ADDR C_HAS_WE 1 indicates that the
WR_ADDR port is
present.

 C_MATCH_ADDR_WIDTH If C_ADDR_TYPE = 0,
log2roundup(C_DEPTH)
If C_ADDR_TYPE = 1 or 2,
C_DEPTH

If C_ADDR_TYPE = 0,
range: 4–12.
If C_ADDR_TYPE = 1
or 2, range: 16–4096.

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 27

Creating a MIF File (Specifying CAM Contents)

The CAM reference design provides the option of initializing the memory contents during
synthesis of the core in XST. For a read-only CAM, a MIF file is required during synthesis of the
core.

The MIF file is a plain-text ASCII file written in binary with each line corresponding to an
address in the CAM. The MIF file is written in the same way as a MIF file for a standard RAM.
Because of this, the MIF file must have a number of lines equal to the depth of the CAM being
used (n), and each line must have a number of binary digits equal to the data width (DIN or m)
of the CAM. The init.mif file provided with the CAM reference design shows an initialization
file for an 8-bit wide (m = 8) by 16-word deep (n = 16) CAM. These are the contents of the
example init.mif file:

• 00100001

• 01010101

• 10101010

• 11110000

• 00001111

C_MATCH_RESOLUTION_TYPE C_MATCH_RESOLUTION_TYPE 1 indicates the highest
matched address
output.
0 indicates the lowest
matched address
output.

C_MEM_INIT C_MEM_INIT 1 indicates MIF file is
used to initialize CAM
contents.

C_MEM_INIT_FILE None This is the hard-coded
path to the init.mif
file location.

C_ELABORATION_DIR None This is the hard-coded
path to the init.mif
file location.

C_MEM_TYPE C_MEM_TYPE 1 indicates block RAM
implementation.
0 indicates SRL16E
implementation.

C_READ_CYCLES Tied to 1 Not currently used.

C_REG_OUTPUTS C_REG_OUTPUTS 1 indicates that the
CAM outputs are
registered (block RAM
type only).

C_TERNARY_MODE C_TERNARY_MODE 0 = No ternary mode.
1 = Standard ternary.
2 = Enhanced ternary.

C_WIDTH C_WIDTH Range: 1–512.

C_WR_ADDR_WIDTH If C_HAS_WE = 1, equals
log2roundup(C_DEPTH)

Range: 4–12 (applies to
writeable CAMs only).

Table 9: RTL Parameters (Cont’d)

Generic Simplified Generics Description

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 28

• 11001100

• 00110011

• 11100011

• 00011100

• 01000010

• 10000100

• 10011111

• 11101110

• 11111111

• 00000000

• 01100110

Each line of the MIF file specifies the match data for that address. For example, if line 3 (where
the file starts at line 0) contained the value 11110000, the CAM signals a MATCH with
MATCH_ADDR = 3 when the DIN port has the value 11110000.

Additionally, for standard ternary CAMs, the MIF file can also specify don’t-care bit entries as
Xs. For example, if line 0 of the MIF file contains the value 000X0100, the CAM signals a
MATCH with MATCH_ADDR = 0 when the DIN port has either the value 00010100 or
00000100.

Supported Design Tools

The design tools supported by this reference design are:

• ISE® Design Suite 13.1 (including XST 13.1 and xilperl)

• Mentor Graphics ModelSim 6.5d

Resource Utilization and Performance

This reference design utilizes these resources:

• Block SelectRAM memory implementation: The number of block SelectRAM primitives
required depends on the CAM depth and width selected in the CustomizeWrapper.pl
script.

• SRL16E implementation: The number of SRL16E primitives required depends on the
depth and width of the CAM and on whether a ternary CAM is selected in the
CustomizeWrapper.pl script.

• Resource utilization and performance benchmarking: To maximize clock frequency for
CAMs deeper than 256 words, a CAM with multi-match unencoded match address type
and no additional match flags should be used. This corresponds to the following option
settings:

• Single-match flag = FALSE

• Multiple-match flag = FALSE

• Match address type = Multi-match unencoded

Table 10 and Table 11 show resource utilization and performance values for a 32-bit wide,
256-bit deep CAM for various match address types and storage element types implemented in
a Virtex-5 device and a Spartan-3A device, respectively. These designs only contain a CAM
and some glue logic, and are therefore representative of ideal performance rather than typical
performance. To ensure timing closure, PERIOD constraints should be included in the user
design. The benchmark designs do not include any implementation constraints besides a
PERIOD constraint on the CAM clock. Virtex-6 devices have roughly the same resource
utilization as Virtex-5 devices for the same CAM design, but with an estimated performance

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 29

gain of 15–20% over Virtex-5 devices. Spartan-6 devices use fewer resources than
Spartan-3A devices, with an estimated performance gain of 10–15% over Spartan-3A devices.

In the benchmark designs described in Table 10 and Table 11, the core was encased in a
wrapper with input and output registers to remove the effects of I/O delays from the results.
Performance might vary depending on the design. Benchmarks were performed targeting the
slowest and fastest speed grade devices in the Virtex-5 and Spartan-3A FPGAs.

• Virtex-5 FPGAs: XC5VLX220-1 (slowest) and XC5VLX220-2 (fastest)

• Spartan-3A FPGAs: XC3S1400A-4 (slowest) and XC3S1400A-5 (fastest)

Table 12 and Table 13 show how CAM content size affects the resource utilization and
performance in Virtex-5 and Spartan-3A devices.

Table 10: Virtex-5 FPGA CAM Implementation: Resource Utilization and Performance

Match Address Type

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf.
(MHz)(1)

Perf.
(MHz)(2)

Block
RAMs LUTs Flip-Flops Perf.

(MHz)(1)
Perf.

(MHz)(2)

Binary Encoded 2048 3438 60 100 110 32 1263 302 110 130

Single Match Unencoded 2048 3604 308 100 110 32 1405 302 100 120

Multi Match Unencoded 2048 3259 308 100 120 32 1144 303 110 130

Notes:
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).

Table 11: Spartan-3A FPGA CAM Implementation: Resource Utilization and Performance

Match Address Type

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf.
(MHz)(1)

Perf.
(MHz)(2)

Block
RAMs LUTs Flip-Flops Perf.

(MHz)(1)
Perf.

(MHz)(2)

Binary Encoded 2048 3333 60 50 60 32 2236 303 60 70

Single Match Unencoded 2048 3430 309 50 60 32 2372 303 50 60

Multi Match Unencoded 2048 3336 309 50 60 32 2176 303 50 60

Notes:
1. XC3S1400A, speed grade -4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).

Table 12: Virtex-5 FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf.

(MHz)(1)
Perf.

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2)

8 32 148 27 190 200 512 1848 36 110 120 2048 7200 39 80 100

32 128 288 52 170 200 2048 3438 60 100 110 8192 13493 63 70 80

64 256 474 84 160 190 4096 5561 93 90 100 16348 21899 101 60 70

Notes:
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).

http://www.xilinx.com

Reference Design

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 30

Table 14 and Table 15 show how CAM content size affects resource usage and performance
clock periods for block SelectRAM memory in Virtex-5 and Spartan-3A devices. These devices
only contain a CAM and some glue logic and for this reason represent ideal performance rather
than typical performance.

Table 16 and Table 17 show the resource usage and performance in Virtex-5 and Spartan-3A
devices for a 32-bit wide and 256-word deep CAM using a multiple match unencoded match
address type with other configuration options turned on.

Table 13: Spartan-3A FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf.

(MHz)(1)
Perf.

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2)

8 32 151 27 80 100 512 1727 36 50 70 2048 6646 42 40 50

32 128 299 52 80 100 2048 3333 60 50 60 8192 12892 66 40 40

64 256 499 84 80 90 4096 5464 92 40 50 - (3) - (3) - (3) - (3) - (3)

Notes:
1. XC3S1400A, speed grade - 4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Does not fit in an XC3S1400A device.

Table 14: Virtex-5 FPGA Block RAM-Based CAM Implementation: Resource Utilization and Performance

CAM
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf.

(MHz)(1)
Perf.

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2)

8 1 95 34 200 210 8 1077 277 130 160 32 4138 1048 100 110

32 4 170 57 170 180 32 1263 302 110 130 128 4677 1072 60 80

64 7 281 91 140 160 56 1721 335 90 110 - (3) - (3) - (3) - (3) - (3)

Notes:
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).
3. Does not fit in the available block RAMs for an XC5VLX220 device.

Table 15: Spartan-3A FPGA SRL-Based CAM Implementation: Resource Utilization and Performance

CAM
Width

CAM Depth

16 256 1024

SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2) SRL16s LUTs Flip-

Flops
Perf.

(MHz)(1)
Perf.

(MHz)(2) SRL16s LUTs Flip-
Flops

Perf.
(MHz)(1)

Perf.
(MHz)(2)

8 1 124 35 110 130 8 1368 278 70 80 32 5623 1079 50 - (3)

32 4 219 59 90 120 32 2236 303 60 70 - (3) - (3) - (3) - (3) - (3)

64 8 357 92 90 110 - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3)

Notes:
1. XC3S1400A, speed grade - 4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Does not fit in the available block RAMs for an XC3S1400A device.

http://www.xilinx.com

References

XAPP1151 (v1.0) March 1, 2011 www.xilinx.com 31

References This document uses the following references:

1. XAPP204, Using Block RAM for High Performance Read/Write CAMs.

2. XAPP201, An Overview of Multiple CAM Designs in Virtex Family Devices.

3. XAPP260, Using Virtex-II Block RAM for High Performance Read/Write CAMs.

4. DS253, Content-Addressable Memory v6.1.

Revision
History

The following table shows the revision history for this document.

Notice of
Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note
is one possible implementation of this feature, application, or standard, and is subject to change without
further notice from Xilinx. You are responsible for obtaining any rights you may require in connection with
your use or implementation of this Application Note. XILINX MAKES NO REPRESENTATIONS OR
WARRANTIES, WHETHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING,
WITHOUT LIMITATION, IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR
FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL XILINX BE LIABLE FOR ANY LOSS OF
DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR INDIRECT
DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Table 16: Virtex-5 FPGA CAM Implementation: Resource Utilization and Performance

Options

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf.
(MHz)(1)

Perf.
(MHz)(2)

Block
RAMs LUTs Flip-Flops Perf.

(MHz)(1)
Perf.

(MHz)(2)

Single Match Multiple Match
Flags On 2048 3259 308 100 120 32 1144 303 110 130

Ternary Mode On 4096 5623 341 80 100 N/A(3) N/A(3) N/A(3) N/A(3) N/A(4)

Registered Outputs N/A(4) N/A(4) N/A(4) N/A(4) N/A(4) 32 1144 562 110 130

Notes:
1. XC5VLX220, speed grade -1 (slowest).
2. XC5VLX220, speed grade -2 (fastest).
3. Ternary mode is not supported for block RAM-based CAMs.
4. Registered outputs are not supported for SRL-based CAMs.

Table 17: Spartan-3A FPGA CAM Implementation: Resource Utilization and Performance

Options

SRL16E Block RAM

SRL16s LUTs Flip-Flops Perf.
(MHz)(1)

Perf.
(MHz)(2)

Block
RAMs LUTs Flip-Flops Perf.

(MHz)(1)
Perf.

(MHz)(2)

Single Match Multiple Match
Flags On 2048 3336 309 50 60 32 2176 303 50 60

Ternary Mode On 4096 5676 341 40 50 N/A(3) N/A(3) N/A(3) N/A(3) N/A(3)

Registered Outputs N/A(4) N/A(4) N/A(4) N/A(4) N/A(4) 32 2265 561 60 70

Notes:
1. XC3S1400A, speed grade -4 (slowest).
2. XC3S1400A, speed grade -5 (fastest).
3. Ternary mode is not supported for block RAM-based CAMs.
4. Registered outputs are not supported for SRL-based CAMs.

Date Version Description of Revisions

03/01/11 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/support/documentation/application_notes/xapp204.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp201.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp260.pdf
http://www.xilinx.com/support/documentation/ip_documentation/cam_ds253.pdf

	Parameterizable Content-Addressable Memory
	Summary
	Introduction
	Features

	Interface
	Functional Description
	Operating Modes
	Block RAM-Based Implementation
	SRL16E-Based Implementation

	Hardware Implementation
	General Overview
	RAM-Based Implementation
	SRL16E-Based Implementation

	Reference Design
	Compilation Parameters
	Creating a MIF File (Specifying CAM Contents)
	Supported Design Tools
	Resource Utilization and Performance

	References
	Revision History
	Notice of Disclaimer

