
[Guide Subtitle]
[optional]

UG612 (v 14.3) October 16, 2012 [optional]

Timing Closure User
Guide

UG612 (v 14.3) October 16, 2012

This document applies to the following software versions: ISE Design Suite 14.3 through 14.7This document applies to the following software versions: ISE Design Suite 14.3 through 14.7This document applies to the following software versions: ISE Design Suite 14.3 through 14.7This document applies to the following software versions: ISE Design Suite 14.3 through 14.7

Timing Closure User Guide www.xilinx.com UG612 (v 14.3) October 16, 2012

Notice of Disclaimer
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum
extent permitted by applicable law: (1) Materials are made available “AS IS” and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES
AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with,
the Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any action brought by a third party) even if such
damage or loss was reasonably foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct
any errors contained in the Materials or to notify you of updates to the Materials or to product specifications. You may not reproduce,
modify, distribute, or publicly display the Materials without prior written consent. Certain products are subject to the terms and conditions
of the Limited Warranties which can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use in any application
requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in Critical Applications:
http://www.xilinx.com/warranty.htm#critapps.

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included
herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owner

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps

UG612 (v 14.3) October 16, 2012 www.xilinx.com Timing Closure User Guide

Revision History
The following table shows the revision history for this document.

Date Version

10/16/20112 14.3 • Removed sentence regarding two unrelated clocks.
• Removed figure “Two Unrelated Clocks Entering the FPGA Device

Through Separate External Pins” and accompanying text.
• Removed figure “Input Clock Goes to a DCM Example” and accompanying

text.
• Removed section “Two Related Clocks Entering the FPGA Device Through

Separate External Pins” and accompanying figure.
• Removed section “Period Constraint Syntax.”
• Removed section “Asynchronous Design Technique Example.”
• Removed section “Constraining Maximum Data Path Delay.”
• Removed section “Two Unrelated Clocks Entering Through Separate

External Pins.”
• Replaced various references to DCM with DCM/PLL/MMCM.
• Added sentence “The CLOCK_DEDICATED_ROUTE constraint applies to

the INSTANCE PIN or NET.”
• Added sentence “Setup and hold analysis is done during timing analysis for

Virtex-5 and newer devices.”
• Added new paragraph beginning “AREA_GROUP is attached to logical

blocks in the design ...”
• Added new paragraph beginning “ The component switching limit is a

device or silicon limit ...”

01/18/2012 13.4 • Moved timing constraints information from the Constraints Guide (UG625)
to this guide.

http://www.xilinx.com

Timing Closure User Guide www.xilinx.com UG612 (v 14.3) October 16, 2012

http://www.xilinx.com

Timing Closure User Guide www.xilinx.com 5
UG612 (v 14.3) October 16, 2012

Revision History . 3

Chapter 1: Introduction

Chapter 2: Timing Constraint Methodology
Basic Constraints Methodology. 12
Input Timing Constraints . 14
Register-To-Register Timing Constraints . 21
Output Timing Constraints. 26

Chapter 3: Timing Constraint Principles
Constraint System. 35
Constraint Priorities. 57
Timing Constraints . 60
Period Constraints . 62
Offset Constraints. 67
From:To (Multi-Cycle) Constraints . 73
Grouping Constraint Syntax. 81
Creating Timing Constraints . 81

Chapter 4: Specifying Timing Constraints in XST
Applying XST Timing Constraints . 83
Timing Model . 83
XCF Constraint Priority . 84
Methods for Specifying Timing Constraints in XST . 84
Syntax Examples for XST Timing Constraints. 86
Asynchronous Register . 87
Clock Signal . 88
Maximum Delay . 90
Maximum Skew. 91
Offset . 93
Period . 94
System Jitter . 97
NET/PIN/INST Timing Ignore . 99
Timing Group . 100
Multi-Cycle Path . 101
Timing Specifications . 102
Timing Name . 105

Table of Contents

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=5

6 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Timing Name Net . 106

Chapter 5: Specifying Timing Constraints in Synplify
Constraint Types . 108
Specifying Timing Constraints in HDL . 108
Syntax Examples for HDL Timing Constraints . 109
black_box_pad_pin . 110
black_box_tri_pins . 111
syn_force_seq_prim . 113
syn_gatedclk_clock_en . 115
syn_gatedclk_clock_en_polarity . 116
syn_isclock . 118
syn_tpdn . 119
syn_tcon . 121
syn_tsun . 124
Specifying Timing Constraints in an .sdc File (Tcl). 127
define_clock . 128
define_clock_delay . 130
define_compile_point . 131
define_current_design . 132
define_false_path . 133
 define_input_delay . 135
define_io_standard . 136
define_multicycle_path . 137
define_output_delay . 139
define_path_delay . 141
define_reg_input_delay . 143
define_reg_output_delay . 144
Specify From/To/Through Points . 145
Specifying Timing Constraints in a SCOPE Spreadsheet . 149
Forward Annotation. 149

Chapter 6: Timing Analysis
Multi-Corner, Multi-Node Timing Analysis . 151
Asynchronous Reset Paths . 152
Timing Analyzer . 152
Timing Report . 153
Period Analysis . 154
Clock Domains. 156
From:To (Multi-Cycle) Analysis . 164
Offset In Analysis. 168
Offset In Before Constraint . 172
Offset In After Constraint . 180

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=6

Timing Closure User Guide www.xilinx.com 7
UG612 (v 14.3) October 16, 2012

Offset Out Analysis . 180
Offset Out Constraint . 183
Offset Out After Constraint . 184
Offset Out Before Constraint . 190
Clock Skew . 191
Clock Uncertainty . 194

Chapter 7: Achieving Timing Closure
When Timing Closure Is Achieved . 197
Steps to Achieving Timing Closure . 201
Step 1: Specify Good Pin Constraints . 202
Step 2: Use Proper Coding Techniques and Architectural Resources 204
Step 3: Drive the Synthesis Tool . 208
Step 4: Apply Global and Path Type Timing Constraints . 213
Step 5: Run Implementation . 216
Step 6: Run SmartXplorer . 219
Step 7: Review Reports . 221
Step 8: Run TRCE and Analyze Timing Results and Report 225

Chapter 8: Overcoming Timing Failures
Reviewing Timing Results . 227
Clock Report . 228
Timing Summary . 228
Useful Strategies . 229
Common Causes of Timing Failures . 231
Timing Failure Design Scenarios . 232

Chapter 9: Cross Probing
Cross Probing Between FPGA Editor and Timing Analyzer 245
Cross Probing From Timing Analyzer to Technology Viewer. 246
Cross Probing From the PlanAhead tool to FPGA Editor . 246
Using Cross Probing During Debugging. 247

Appendix A: Additional Resources
Xilinx® Resources . 251
ISE Documentation . 251
SmartXplorer Documentation . 251
PlanAhead tool Documentation . 252

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=7

8 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=8

Timing Closure User Guide www.xilinx.com 9
UG612 (v 14.3) October 16, 2012

Chapter 1

Introduction

The Timing Closure User Guide (UG612) addresses timing closure in high-performance
applications. The Guide is designed for all FPGA designers, from beginners to advanced.

The high performance of today's Xilinx® devices can overcome the speed limitations of
other technologies and older devices. Designs that formerly only fit or ran at high clock
frequencies in an ASIC device are finding their way into Xilinx FPGA devices. Designers
must have a proven methodology for obtaining their performance objectives.

This Guide discusses:

• The fundamentals of timing constraints.

• The ability to group elements and provide a better understanding of the constraint
system tool.

• The analysis of the basic constraints, with clock skew and clock uncertainty.

• Specifying timing constraints in the Xilinx Synthesis Technology (XST).

• Specifying timing constraints in Synplify.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=9

10 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 1: Introduction

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=10

Timing Closure User Guide www.xilinx.com 11
UG612 (v 14.3) October 16, 2012

Chapter 2

Timing Constraint Methodology

You must have a proven methodology in order to meet your design objectives. This
chapter discusses how to:

• Understand your design requirements

• Constrain your design to meet these requirements

Before starting a design, you must understand:

• The performance requirements of the system

• The features of the target device

This knowledge allows you to use proper coding techniques using the features of the
device to give the best performance.

The FPGA device requirements depend on the system and the upstream and downstream
devices. Once the interfaces to the FPGA device are known, the internal requirements can
be outlined. How to meet these requirements depends on the device and its features.

You should understand:

• The device clocking structure

• RAM and DSP blocks

• Any hard IP contained within the device

For more information, see the device user guide cited in Appendix A, Additional
Resources.

Timing constraints communicate all design requirements to the implementation tools. This
also implies that all paths are covered by the appropriate constraint. This chapter provides
general guidelines that explain the strategy for identifying and constraining the most
common timing paths in FPGA devices as efficiently as possible.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=11

12 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Basic Constraints Methodology
In order to ensure a valid design, the timing requirements for all paths must be
communicated to the implementation tools. The timing requirements can be broken down
into several global categories based on the type of path that is to be covered. The most
common types of path categories include:

• Input paths

• Register-to-register paths

• Output paths

• Path specific exceptions

A Xilinx® timing constraint is associated with each of these global category types. The most
efficient way to specify these constraints is to begin with global constraints, then add path
specific exceptions as needed. In many cases, only the global constraints are required.

The FPGA implementation tools are driven by the specified timing requirements. The tools
assign device resources, and expends the appropriate amount of effort necessary to ensure
that the timing requirements are met. However, when a requirement is over-constrained
(or specified as a value greater than the design requirement), the effort to meet this
constraint increases significantly, and results in increased memory use and tool runtime. In
addition, over-constraining can degrade performance for not only that particular
constraint, but for other constraints as well. For this reason, Xilinx recommends that you
specify the constraint values using the actual design requirements.

The method of applying constraints given in this guide uses User Constraints File (UCF)
constraint syntax examples. This format highlights the constraints syntax that conveys the
design requirements. However, the easiest way to enter design constraints is to use
Constraints Editor, which:

• Provides a unified location in which to manage all timing constraints associated with
a design.

• Provides assistance in creating timing constraints from the design requirements.

Timing requirements fall into several global categories depending on the type of path to be
covered.

The most common types of path categories include:

• Input paths

• Synchronous element to synchronous element paths

• Path specific exceptions

• Output paths

A Xilinx® timing constraint is associated with each global constraint type. To efficiently
specify these constraints:

• Begin with global constraints.

• Add path specific exceptions as needed.

Only global constraints are required in many cases.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=12

Timing Closure User Guide www.xilinx.com 13
UG612 (v 14.3) October 16, 2012

Basic Constraints Methodology

Over-Constraining
The FPGA device implementation tools are driven by the specified timing requirements.
They assign device resources, and expend the appropriate amount of effort to meet timing
requirements.

The effort spent by the tools to meet this constraint increases significantly when a
requirement is:

• Over-constrained, or

• Specified as a value with a greater frequency than the design requirement

This extra effort results in:

• Increased memory use

• Increased tool runtime

Over-constraining can result in loss of performance for both:

• The constraint in question

• Other constraints

For this reason, Xilinx recommends that you specify the constraint values using actual
design requirements.

If a design is correctly constrained, including INPUT_JITTER and SYSTEM_JITTER
requirements, over-constraining is not necessary.

Commenting the Design File
Always comment the constraints file. This allows other designers to understand why each
constraint is used.

Include in your comments:

• The constraint source

• Whether the Period constraint is based on an external clock

Using Constraints Editor
This Guide uses XST Constraint File (XCF) syntax examples. This format passes the design
requirements to the implementation tools.

However, the easiest way to enter design constraints is to use Constraints Editor.

• Constraints Editor provides a unified location in which to manage all timing
constraints.

• Constraints Editor helps you create timing constraints from the design requirements
using XCF syntax.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=13

14 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Input Timing Constraints
This section discuss the methodology for specifying input timing constraints. The input
timing constraints cover the data path from the external pin or pad of the package of the
FPGA device to the internal synchronous element or register that captures that data. The
OFFSET IN constraint is used to specify the input timing requirements.

The input timing requirements are based upon the type (source or system synchronous)
and the data rate (SDR or DDR) of the interface. These categories include:

• System Synchronous Input

• Timing Diagram for Ideal System Synchronous SDR Interface Example

• Source Synchronous Inputs

• Timing Diagram for Ideal Source Synchronous DDR Interface Example

The OFFSET IN constraint defines the relationship between the data and the clock edge
used to capture that data at the pin or pads of the FPGA device. The analysis of the OFFSET
IN includes all internal factors affecting the delay of the clock signal and the data signal.
These factors include:

• Frequency and phase transformation of the clock

• Clock Uncertainties

• Data Delay Adjustments

The input clock uncertainty and clock arrival times are derived from the PERIOD
constraint associated with the interface clock referenced in the OFFSET IN constraint. For
more information on the Period constraint and adding Input Jitter, see Period Constraints
in Chapter 3, Timing Constraint Principles.

System Synchronous Inputs
In a system synchronous interface, a common system clock both transfers and captures the
data. This interface uses a common system clock. The board trace delays and clock skew
limit the operating frequency of the interface.

The lower frequency also results in the system synchronous input interface typically being
an SDR application.

Simplified System Synchronous Interface with Associated SDR Timing

In the system synchronous SDR application example shown in the following figure, the
data is:

1. Transmitted from the source device on one rising clock edge, and

2. Captured in the FPGA device on the next rising clock edge.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=14

Timing Closure User Guide www.xilinx.com 15
UG612 (v 14.3) October 16, 2012

Input Timing Constraints

X-Ref Target - Figure 2-1

The global Offset In constraint is the most efficient way to specify the input timing for a
system synchronous interface. In this method, one Offset In constraint is defined for each
system synchronous input interface clock. This single constraint covers the paths of all
input data bits that are captured in synchronous elements triggered by the specified input
clock.

Specifying Input Timing

To specify the input timing:

• Define the clock Period constraint for the input clock associated with the interface

• Define the global Offset In constraint for the interface

Ideal System Synchronous SDR Interface

The following figure shows a timing diagram for an ideal System Synchronous SDR
interface.

• The interface has a clock period of 5 ns.

• The data for both bits of the bus remains valid for the entire period.
X-Ref Target - Figure 2-2

Global Offset In Constraint

The global Offset In constraint is:

OFFSET = IN value VALID value BEFORE clock;

In the Offset In constraint, OFFSET=IN <value> determines the time from the capturing
clock edge to the time in which data first becomes valid. In this system synchronous

Figure 2-1: Simplified System Synchronous Interface with Associated SDR Timing

X11047

Source Device

REG

D

CLK

Data
Q

System Clock

FPGA

REG

D

CLK

Q

DataData

System Clock

Transmit
Edge

Capture
Edge

Figure 2-2: Timing Diagram for an Ideal System Synchronous SDR Interface

X11048

DataData 1

DataData 2

SysClk

Transmit
Edge

Capture
Edge

PERIOD = 5 ns

OFFSET IN BEFORE = 5ns

VALID = 5 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=15

16 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

example, the data becomes valid 5 ns before the capturing clock edge. In the Offset In
constraint, the VALID <value> determines the duration in which data remains valid. In
this example, the data remains valid for 5 ns.

For this example, the complete Offset In specification with associated Period constraint is:

NET "SysClk" TNM_NET = "SysClk";
TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%;
OFFSET = IN 5 ns VALID 5 ns BEFORE "SysClk";

This global constraint covers both the data bits of the bus:

• data1

• data2

Source Synchronous Inputs
In a source synchronous input interface, a clock is regenerated and transmitted along with
the data from the source device along similar board traces. This clock captures the data in
the FPGA device.

The board trace delays and board skew no longer limit the operating frequency of the
interface. The higher frequency also results in the source synchronous input interface
typically being a dual data rate (DDR) application.

Simplified Source Synchronous Input Interface with Associated DDR Timing

In the source synchronous DDR application example shown in the following figure,
unique data is:

1. Transmitted from the source device on both the rising and falling clock edges, and

2. Captured in the FPGA device using the regenerated clock.
X-Ref Target - Figure 2-3

The global Offset In constraint is the most efficient way to specify the input timing for a
source synchronous interface. In the DDR interface, one Offset In constraint is defined for
each edge of the input interface clock. These constraints cover the paths of all input data
bits that are captured in registers triggered by the specified input clock edge.

Figure 2-3: Simplified Source Synchronous Input Interface with Associated DDR
Timing

X11049

Source Device

REG

D

CLK

Data

Clock

Q

FPGA

REG

D

CLK

Q

REG

D

CLK

Q

Clock

Data 1 Rising Data Falling Data

Data 2 Rising Data Falling Data

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=16

Timing Closure User Guide www.xilinx.com 17
UG612 (v 14.3) October 16, 2012

Input Timing Constraints

Specifying Input Timing

To specify the input timing, define the constraints as shown in the following table.

Ideal Source Synchronous DDR Interface

The following figure shows a timing diagram for an ideal Source Synchronous DDR
interface.

• The interface has a clock period of 5 ns with a 50/50 duty cycle.

• The data for both bits of the bus remains valid for the entire ½ period.
X-Ref Target - Figure 2-4

Global Offset In Constraint

The global Offset In constraint for the DDR case is:

OFFSET = IN value VALID value BEFORE clock RISING;
OFFSET = IN value VALID value BEFORE clock FALLING;

In the Offset In constraint, OFFSET=IN <value> determines the time from the capturing
clock edge in which data first becomes valid.

In this source synchronous input example:

• The rising data becomes valid 1.25 ns before the rising clock edge.

• The falling data also becomes valid 1.25 ns before the falling clock edge.

In the Offset In constraint, the VALID <value> determines the duration in which data
remains valid. In this example, both the rising and falling data remains valid for 2.5 ns.

Table 2-1: Specifying Input Timing

Constraint Define For

Clock Period Input clock

Global Offset In Rising edge

Global Offset In Falling edge

Figure 2-4: Timing Diagram for Ideal Source Synchronous DDR

SysClk

Data 1 Data Data

Data 2 Data Data

OFFSET IN
=1.25 ns

OFFSET IN
=1.25 ns

VALID = 2.5 ns VALID = 2.5 ns

Data 1

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=17

18 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

For this example, the complete Offset In specification with an associated Period constraint
is:

NET "SysClk" TNM_NET = "SysClk";
TIMESPEC "TS_SysClk" = PERIOD "SysClk" 5 ns HIGH 50%;

OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE "SysClk" RISING;
OFFSET = IN 1.25 ns VALID 2.5 ns BEFORE "SysClk" FALLING;

This global constraint covers both the data bits of the bus:

• data1

• data2

UCF Source Synchronous DDR Edge Aligned Example
The Source Synchronous Dual Data Rate (DDR) Edge aligned case consists of an interface
where the clock is sent from the transmitting device edge aligned with the data to the
FPGA. In a dual data rate interface, data is captured with both the rising and falling clock
edges. In the DDR case, separate Offset In constraints must be defined for the rising and
falling clock edge registers capturing the data. The use of the RISING and FALLING
keywords with the Offset In constraint simplifies this task.

Example Waveform

In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered in the high and low
portion of the clock waveform. This results in a 250 ps margin before and after data valid
window.

Rising Edge Constraints

The rising edge Offset In constraint defines the time that the data becomes valid prior to
rising clock edge used to capture the data. In this example, the data becomes valid 250 ps
after the rising clock edge. This results in an OFFSET IN BEFORE value of -250 ps with the
value negative because it begins after the clock edge. Once the data begins, it remains valid
for 2 ns. This results in a VALID value of 2 ns. The RISING keyword is used with this
constraint to indicate that the constraint applies to only the rising edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the rising clock edge.

Falling Edge Constraints

The falling edge Offset In constraint defines the time that the data becomes valid prior to
falling clock edge used to capture the data. In this example, the data becomes valid 250 ps
after the falling clock edge. This results in an OFFSET IN BEFORE value of -250 ps with the
value negative because it begins after the clock edge. Once the data begins, it remains valid
for 2 ns. This results in a VALID value of 2 ns. The FALLING keyword is used with this
constraint to indicate that the constraint applies to only the falling edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the falling clock edge.

UCF Syntax

The complete UCF syntax of the clock PERIOD and Offset In constraint for the example is
shown below.

NET “clock” TNM_NET = CLK; TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%; OFFSET = IN -250
ps VALID 2 ns BEFORE clock RISING; OFFSET = IN -250 ps VALID 2 ns BEFORE clock FALLING

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=18

Timing Closure User Guide www.xilinx.com 19
UG612 (v 14.3) October 16, 2012

Input Timing Constraints

UCF Source Synchronous DDR Center Aligned Example
The Source Synchronous Dual Data Rate (DDR) Center aligned case consists of an interface
where the clock is sent from the transmitting device aligned with the center of the data. In
a dual data rate interface, data is captured with both the rising and falling clock edges. In
the DDR case, separate Offset In constraints must be defined for the rising and falling clock
edge registers capturing the data. Using the RISING and FALLING keywords with the
Offset In constraint simplifies this task.

Example Waveform

In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered over the high and
low clock edges. This results in a 250 ps margin before and after data valid window.

Rising Edge Constraints

The rising edge Offset In constraint defines the time that the data becomes valid prior to
rising clock edge used to capture the data. In this example, the data becomes valid 1 ns
before the rising clock edge. This results in an OFFSET IN BEFORE value of 1 ns with the
value positive because it begins before the clock edge.

Once the data begins, it remains valid for 2 ns. This results in a VALID value of 2 ns. The
RISING keyword is used with this constraint to indicate that the constraint applies to only
the rising edge synchronous elements, and that the OFFSET IN BEFORE value is specified
to the rising clock edge.

Falling Edge Constraints

The falling edge Offset In constraint defines the time that the data becomes valid prior to
falling clock edge used to capture the data. In this example, the data becomes valid 1 ns
before the falling clock edge. This results in an OFFSET IN BEFORE value of 1 ns with the
value positive because it begins before the clock edge.

Once the data begins, it remains valid for 2 ns. This results in a VALID value of 2 ns. The
FALLING keyword is used with this constraint to indicate that the constraint applies to
only the falling edge synchronous elements, and that the OFFSET IN BEFORE value is
specified to the falling clock edge.

UCF Syntax

The complete UCF syntax of the clock PERIOD and Offset In constraint for the example is
shown below.

NET “clock” TNM_NET = CLK; TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%; OFFSET = IN 1 ns
VALID 2 ns BEFORE clock RISING; OFFSET = IN 1 ns VALID 2 ns BEFORE clock FALLING;

UCF System Synchronous SDR Examples
The System Synchronous Single Data Rate (SDR) case consists of an interface where the
clock is sent from the transmitting device with one clock edge and captured by the FPGA
with the next clock edge. In the single data rate interface data is sent once per clock cycle
and requires only one Offset In constraint.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=19

20 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Example Waveform

In this example a single data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The data is valid for 4 ns and begins 500 ps after the transmitting clock edge.

Input Constraints

The Offset In constraint defines the time that the data becomes valid prior to rising clock
edge used to capture the data. In this example, the data becomes valid 500 ps after the
transmitting clock edge, or 4.5 ns before the clock edge used to capture the data. This
results in an OFFSET IN BEFORE value of 4.5 ns with the value positive because it begins
before the clock edge. Once the data begins, it remains valid for 4 ns. This results in a
VALID value of 4 ns.

UCF Syntax

The complete UCF syntax of the clock PERIOD and Offset In constraint for the example is
shown below.

NET “clock” TNM_NET = CLK; TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%; OFFSET = IN 4.5 ns
VALID 4 ns BEFORE clock;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=20

Timing Closure User Guide www.xilinx.com 21
UG612 (v 14.3) October 16, 2012

Register-To-Register Timing Constraints

Register-To-Register Timing Constraints
This section discuss the methodology for the period specification of register-to-register
synchronous path timing requirements (Period constraint).

The Period constraint:

• Defines the timing of the clock domains.

• Covers the synchronous data path between internal registers.

• Analyzes the paths within a single clock domain.

• Analyzes all paths between related clock domains as well.

• Takes into account all frequency, phase, and uncertainty differences between the clock
domains during analysis.

The application and methodology for constraint synchronous clock domains falls under
several common categories. These categories include

• Automatically Related Synchronous DLL, DCM, PLL, and MMCM Clock Domainss

• Manually Related Synchronous Clock Domains

• Asynchronous Clock Domains

By allowing the tools to automatically create clock relationships for DCM, PLL, and
MMCM output clocks, and manually defining relationships for externally related clocks,
all synchronous cross-clock-domain paths are covered by the appropriate constraints, and
properly analyzed. The proper application of Period constraints that follow this
methodology eliminates the need for additional cross-clock-domain constraints.

For more information, see Period Constraints in Chapter 3, Timing Constraint Principles.

Automatically Related Synchronous DLL, DCM, PLL, and MMCM Clock
Domains

The most common type of clock circuit is one in which:

• The input clock is fed into a DCM, PLL, or MMCM.

• The outputs are used to clock the synchronous paths in the device.

The recommended methodology is to define a Period constraint on the input clock to the
DCM, PLL, or MMCM.

By placing PERIOD on the input clock, the tools automatically:

• Derive a new PERIOD for each of the DCM, PLL, or MMCM output clocks.

• Determine the clock relationships between the output clock domains.

• Perform an analysis for any paths between these synchronous domains.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=21

22 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Example

In this example, the input clock goes to a DCM. The following figure shows the circuit for
this example.
X-Ref Target - Figure 2-5

Figure 2-5: Input Clock Goes to a DCM

The Period constraint syntax for this example is:

NET “ClockName” TNM_NET = “TNM_NET_Name”;
TIMESPEC “TS_name” = PERIOD “TNM_NET_Name” PeriodValue HIGH HighValue%;

For PERIOD, the PeriodValue defines the duration of the clock period. In this case, the
input clock to the DCM has a period of 5 ns. The HighValue of the PERIOD constraint
defines the percent of the clock waveform that is HIGH.

In this example, the waveform has a 50/50 duty cycle resulting in a HighValue of 50%. The
syntax for this example is:

NET “ClkIn” TNM_NET = “ClkIn”;
TIMESPEC “TS_ClkIn” = PERIOD “ClkIn” 5 ns HIGH 50%;

Based on the input clock PERIOD constraint given above, the DCM automatically:

• Creates two output clock constraints for the DCM outputs.

• Performs analysis between the two domains.

Period Constraint Syntax

The Period constraint syntax for this example is:

NET "ClockName" TNM_NET = "TNM_NET_Name";
TIMESPEC "TS_name" = PERIOD "TNM_NET_Name" PeriodValue HIGH HighValue%;

Table 2-2: Period Constraint Values

Value Defines This Example

PeriodValue Duration of the clock period Input clock to the DCM has a period of 5 ns

HighValue Percent of the clock waveform that is High Waveform has a 50/50 duty cycle resulting in
a HighValue of 50%

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=22

Timing Closure User Guide www.xilinx.com 23
UG612 (v 14.3) October 16, 2012

Register-To-Register Timing Constraints

The syntax for this example is:

NET "ClkIn" TNM_NET = "ClkIn";
TIMESPEC "TS_ClkIn" = PERIOD "ClkIn" 5 ns HIGH 50%;

Based on the input clock Period constraint given above, the DCM:

• Creates two output clock constraints for the DCM outputs.

• Performs analysis between the two domains.

Manually Related Synchronous Clock Domains
In some cases, the tools cannot automatically determine the relationship between
synchronous clock domains (for example, when related clocks enter the FPGA device on
separate pins). In this case, the recommended constraint methodology is to:

• Create separate Period constraints for both input clocks.

• Define a manual relationship between the clocks.

Once the manual relationship is defined:

• All paths between the two synchronous domains are automatically analyzed.

• All frequency, phase, and uncertainty information is automatically taken into account.

The Xilinx constraints system allows for complex manual relationships to be defined
between clock domains using PERIOD. This manual relationship can include clock
frequency and phase transformations. The methodology for this process is:

1. Define PERIOD for the primary clock.

2. Define the PERIOD constraint for the related clock using the first PERIOD constraint
as a reference.

Example

In this example, two related clocks enter the FPGA device through separate external pins.

• The first clock (CLK1X) is the primary clock.

• The second clock (CLK2X180) is the related clock.

The circuit for this example is shown in the following figure.
X-Ref Target - Figure 2-6

Figure 2-6: Two Related Clocks Entering the FPGA Device Through Separate
External Pins

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=23

24 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

The PERIOD syntax for this example is:

NET “PrimaryClock” TNM_NET = “TNM_Primary”;
NET “RelatedClock” TNM_NET = “TNM_Related”;
TIMESPEC “TS_primary” = PERIOD “TNM_Primary” PeriodValue HIGH
HighValue%;
TIMESPEC “TS_related” = PERIOD “TNM_Related” TS_Primary_relation PHASE
value;

In the related PERIOD definition, the PERIOD value is defined as a time unit (period)
relationship to the primary clock. The relationship is expressed in terms of the primary
clock TIMESPEC.

In this example CLK2X180 operates at twice the frequency of CLK1X which results in a
PERIOD relationship of ½. In the related PERIOD definition, the PHASE value defines the
difference in time between the rising clock edge of the source clock and the related clock. In
this example, the CLK2X180 clock is 180 degrees shifted, so the rising edge begins 1.25 ns
after the rising edge of the primary clock.

The syntax for this example is:

NET“Clk1X"TNM_NET=“Clk1X";
NET“Clk2X180"TNM_NET=“Clk2X180";
TIMESPEC"TS_Clk1X"=PERIOD"Clk1X7 5ns;
TIMESPEC"TS_Clk2X180"=PERIOD"Clk2X180“TS_Clk1X/2PHAS2 +1.25ns;

Asynchronous Clock Domains
Asynchronous clock domains are those in which the transmit and capture clocks bear no
frequency or phase relationship. Because the clocks are not related, it is not possible to
determine the final relationship for setup and hold time analysis. For this reason, Xilinx
recommends using proper asynchronous design techniques to ensure that the data is
successfully captured. However, while not required, in some cases designers wish to
constrain the maximum data path delay in isolation without regard to clock path
frequency or phase relationship.

The Xilinx constraints system allows for the constraining of the maximum data path delay
without regard to source and destination clock frequency and phase relationship.

This requirement is specified using From-To with the DATAPATHONLY keyword.

The methodology for this process is:

1. Define a time group for the source registers

2. Define a time group for the destination registers

3. Define the maximum delay of the net using From-To between the two time groups
with the DATAPATHONLY keyword.

For more information on using From-To with the DATAPATHONLY keyword, see
From-To.

In some cases, the relationship between synchronous clock domains can not be
automatically determined - for example, when related clocks enter the FPGA device on
separate pins. In this case, Xilinx recommends that you:

• Define a separate Period constraint for each input clock.

• Define a manual relationship between the clocks.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=24

Timing Closure User Guide www.xilinx.com 25
UG612 (v 14.3) October 16, 2012

Register-To-Register Timing Constraints

Path Analysis

Once you define the manual relationship, the tools analyze all paths between the two
synchronous domains. The analysis takes into account all frequency, phase, and
uncertainty information.

Defining Complex Manual Relationships

The Xilinx constraint system allows you to define complex manual relationships among
clock domains using the Period constraint including:

• Clock frequency

• Phase transformations

To define complex manual relationships among clock domains using the Period constraint,
define the Period constraint for:

• The primary clock

• The related clock using the first Period constraint as a reference

For more information on using the Period constraint to define clock relationships, see
Period Constraints in Chapter 3, Timing Constraint Principles.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=25

26 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Output Timing Constraints
This section discuss the methodology for specify output timing constraints. The output
timing constraints cover the data from the internal synchronous element or register to the
external pin or pad of the package of the FPGA device.

The OFFSET OUT constraint is used to specify the output timing requirements. The output
timing requirements are based upon the type (source or system synchronous) and the data
rate (SDR or DDR) of the interface.

The OFFSET OUT constraint defines the relationship between the data and the clock edge
used to launch that data at the pin or pads of the FPGA device. The analysis of the OFFSET
OUT includes all internal factors affecting the delay of the clock signal and the data signal.
These factors include:

• Frequency and phase transformation of the clock

• Clock Uncertainties

• Data Delay Adjustments
X-Ref Target - Figure 2-7

Figure 2-7: Output Delay Path Example

The input clock uncertainty and clock arrival times are derived from the PERIOD
constraint associated with the interface clock referenced in the OFFSET OUT constraint.

For more information on the Period constraint and adding Input Jitter, see Period
Constraints in Chapter 3, Timing Constraint Principles.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=26

Timing Closure User Guide www.xilinx.com 27
UG612 (v 14.3) October 16, 2012

Output Timing Constraints

System Synchronous Output
In the system synchronous output interface, a common system clock both transfers and
captures the data. Because this interface uses a common system clock, only the data is
transmitted from the FPGA device to the receiving device.

See the following figure.
X-Ref Target - Figure 2-8

Specifying Output Timing

If these paths must be constrained, the global Offset Out constraint is the most efficient
way to specify the output timing for the system synchronous interface. In the global
method, one Offset Out constraint is defined for each system synchronous output interface
clock. This single constraint covers the paths of all output data bits sent from registers
triggered by the specified input clock.

To specify the output timing, define:

• A Timing Name for the output clock to create a time group, which contains all output
registers triggered, by the input clock.

• The global Offset Out constraint for the interface.

Figure 2-8: Simplified System Synchronous Output Interface with Associated SDR
Timing

X11055

FPGA

REG

D

CLK

Data
Q

System Clock

Receiving Device

REG

D

CLK

Q

DataData

System Clock

Transmit
Edge

Capture
Edge

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=27

28 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

System Synchronous SDR Output Interface

The following figure shows a timing diagram for a System Synchronous SDR output
interface. The data in this example must become valid at the output pins a maximum of 5
ns after the input clock edge at the pin of the FPGA device.
X-Ref Target - Figure 2-9

Global Offset Out Constraint

The global Offset Out constraint for the system synchronous interface is:

OFFSET = OUT value AFTER clock;

In the Offset Out constraint, OFFSET=OUT <value> determines:

1. The maximum time from the rising clock edge at the input clock port, until -->

2. The data first becomes valid at the data output port of the FPGA device.

In this system synchronous example, the output data must become valid at least 5 ns after
the input clock edge.

For this example, the complete Offset Out specification is:

NET "ClkIn" TNM_NET = "ClkIn";
OFFSET = OUT 5 ns AFTER "ClkIn";

This global constraint covers both data bits of the bus:

• data1

• data2

Figure 2-9: Timing Diagram for System Synchronous SDR Output Interface

X11056

FPGA

REG

ClkIn

D

CLK

Q

REG

D

CLK

Q Valid DataData 1

Valid DataData 2

Data 1

Data 2

ClkIn

Input Clock Edge

OFFSET OUT AFTER
5 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=28

Timing Closure User Guide www.xilinx.com 29
UG612 (v 14.3) October 16, 2012

Output Timing Constraints

Source Synchronous Output
In the source synchronous output interface, a clock is regenerated and transmitted with the
data from the FPGA device. The regenerated clock is transmitted with the data.

The interface is limited in performance primarily by:

• System noise, and

• The skew between the regenerated clock and the data bits

See the following figure.

Simplified Source Synchronous Output Interface with Associated DDR
Timing

In this interface, the time from the input clock edge to the output data becoming valid is
not as important as the skew between the output data bits. In most cases, it can be left
unconstrained.
X-Ref Target - Figure 2-10

Offset Out Constraint

The global Offset Out constraint is the most efficient way to specify the output timing for
a source synchronous interface.

In the DDR interface, one Offset Out constraint is defined for each edge of the output
interface clock. These constraints cover the paths of all output data bits that are transmitted
by registers triggered with the specified output clock edge.

Specifying Input Timing

To specify the input timing, define:

• A Timing Name constraint for the output clock to create a time group containing all
output registers triggered by the output clock.

• The global Offset Out constraint for the rising edge (Rising) of the interface.

• The global Offset Out constraint for the falling edge (Falling) of the interface.

Figure 2-10: Simplified Source Synchronous Output Interface with Associated DDR
Timing

X11057

FPGA

REG

ClkIn

D

CLK

Q

REG

D

CLK

Q

Data 1

VCC

GND

ClkOut
CkOut

Data 1

ClkIn

Rising Data Falling Data

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=29

30 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Ideal Source Synchronous DDR Interface

The following figure shows a timing diagram for an ideal Source Synchronous DDR
interface.

• The interface has a clock period of 5 ns with a 50/50 duty cycle.

• The data for both bits of the bus remains valid for the entire ½ period.
X-Ref Target - Figure 2-11

Offset Out Constraint

In the Offset Out constraint, OFFSET=OUT <value> determines:

1. The maximum time from the rising clock edge at the input clock port, until -->

2. The data first becomes valid at the data output port of the FPGA device.

When <value> is omitted from the Offset Out constraint, the constraint becomes a
report-only specification that reports the skew of the output bus.

The Reference Pin keyword defines the regenerated output clock as the reference point
against which the skew of the output data pins is reported.

For this example, the complete Offset Out specification for both the rising and falling clock
edges is:

NET “ClkIn” TNM_NET = “ClkIn”;
OFFSET = OUT AFTER “ClkIn” REFERENCE_PIN “ClkOut” RISING;
OFFSET = OUT AFTER “ClkIn” REFERENCE_PIN “ClkOut” FALLING;

By using the global definitions of the input, register-to-register, and output timing
constraints, the majority of the paths are properly constrained. However, in certain cases a
small number of paths contain exceptions to the global constraint rules.

The most common types of exceptions are:

• False Paths (Paths Between Registers That Do Not Affect Timing)

• Multi-Cycle Paths

Figure 2-11: Timing Diagram for an Ideal Source Synchronous DDR

X11058

SysClk

Data 1 Data Data

Data 2 Data Data

PERIOD = 5 ns

OFFSET OUT
=1.25 ns

OFFSET OUT
=1.25 ns

VALID = 2.5 ns VALID = 2.5 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=30

Timing Closure User Guide www.xilinx.com 31
UG612 (v 14.3) October 16, 2012

Output Timing Constraints

The global definitions of the following constraints properly constrain the majority of the
paths:

• Input

• Register-to-register

• Output timing

In some cases, a small number of paths contain exceptions to the global constraint rules.

False Paths (Paths Between Registers That Do Not Affect Timing)
You can remove a set of paths from timing analysis if you are certain that these paths do
not affect timing performance.

Use the From-To constraint with the Timing Ignore keyword to specify the set of paths to
be removed from timing analysis. This allows you to:

• Specify a set of registers in a source time group.

• Specify a set of registers in a destination time group.

• Remove all paths between those time groups from analysis.

To specify the Timing Ignore constraint for this method, define:

• A set of registers for the source time group.

• A set of registers for the destination time group.

• A From-To constraint with a Timing Ignore keyword to remove the paths between the
groups.

The following figure shows a path between two registers that does not affect timing. You
want to remove this path from analysis.
X-Ref Target - Figure 2-12

The generic syntax for defining a Timing Ignore constraint between time groups is:

TIMESPEC "TSid" = FROM "SRC_GRP" TO "DST_GRP" TIG;

In the From-To Timing Ignore example:

• The SRC_GRP defines the set of source registers at which path tracing begins.

• The DST_GRP defines the set of destination registers at which the path tracing ends.

• All paths that begin in the SRC_GRP and end in the DST_GRP are ignored.

Figure 2-12: Path Between Two Registers That Does Not Affect Timing

X11059

REG

D

CLK1

CLK2

CLK

Ignored Path
Q

REG

D

CLK

Q

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=31

32 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Syntax Example

NET "CLK1" TNM_NET = FFS "GRP_1";
NET "CLK2" TNM_NET = FFS "GRP_2";
TIMESPEC TS_Example = FROM "GRP_1" TO "GRP_2" TIG;

Multi-Cycle Paths
In a Multi-Cycle path, data is transferred from source to destination synchronous elements
at a rate less than the clock frequency defined in the Period specification.

This occurs most often when the synchronous elements are gated with a common clock
enable signal. By defining a Multi-Cycle path, the timing constraints for these synchronous
elements are relaxed over the default Period constraint.

The Multi-Cycle path constraint can be defined with respect to the Period constraint
identifier (TS_clk125) and state the multiplication or the number of period cycles
(TS_clk125 * 3). The implementation tools can then prioritize the implementation of
these paths.

Specifying the Set of Multi-Cycle Paths

One common way to specify the set of Multi-Cycle paths is to define a time group using the
clock enable signal. This allows you to:

• Define one time group containing both the source and destination synchronous
elements using a common clock enable signal.

• Apply the Multi-Cycle constraint to all paths between these synchronous elements.

To specify the From:To (Multi-Cycle) constraint for this method, define:

• A Period constraint for the common clock domain.

• A set of registers based on a common clock enable signal.

• A From:To (Multi-Cycle) constraint describing the new timing requirement.

Path Between Two Registers Clocked by a Common Clock Enable Signal

The following figure shows a hypothetical case in which a path between two registers is
clocked by a common clock enable signal.

In this example, the clock enable is toggled at a rate that is one-half of the reference clock.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=32

Timing Closure User Guide www.xilinx.com 33
UG612 (v 14.3) October 16, 2012

Output Timing Constraints

X-Ref Target - Figure 2-13

Generic Syntax

The generic syntax for defining a Multi-Cycle path between time groups is:

TIMESPEC "TSid" = FROM "MC_GRP" TO "MC_GRP" <value>;

MC_GRP

In the From:To (Multi-Cycle) example:

• The MC_GRP defines the set of registers that are driven by a common clock enable
signal.

• Paths that begin in the MC_GRP and end in the MC_GRP have the Multi-Cycle timing
requirement applied to them.

• Paths into and out of the MC_GRP are analyzed with the appropriate Period
specification.

Syntax Example

NET "CLK1" TNM_NET = "CLK1";
TIMESPEC "TS_CLK1" = PERIOD "CLK1" 5 ns HIGH 50%;
NET "Enable" TNM_NET = FFS "MC_GRP";
TIMESPEC TS_Example = FROM "MC_GRP" TO "MC_GRP" TS_CLK1*2;

Figure 2-13: Path Between Two Registers Clocked by a Common Clock Enable
Signal

X11060

REG

D

CLK1

Enable

Mutiple-Cycle Path

CLK

Q

EN

REG

D

CLK

Q

EN

REG

D

CLK

Q

EN

REG

D

CLK

Q

EN

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=33

34 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 2: Timing Constraint Methodology

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=34

Timing Closure User Guide www.xilinx.com 35
UG612 (v 14.3) October 16, 2012

Chapter 3

Timing Constraint Principles

This chapter discusses the fundamentals of timing constraints, including:

• Period Constraints

• Offset Constraints

• From:To (Multi-Cycle) Constraints

This chapter also discusses the ability to group elements in order to provide a better
understanding of the constraint system subsystem.

Constraint System
The constraint system is that portion of the implementation tools (NGDBuild) that parses
and understands the design physical and timing constraints.

The constraint system:

• Parses the constraints from the following files and delivers this information to the
other implementation tools:

• NCF

• XCF

• EDN, EDF, and EDIF

• NGC

• NGO

• Confirms that the constraints are correctly specified.

• Applies the necessary attributes to the corresponding elements.

• Issues error and warning messages for constraints that do not correlate correctly with
the design.

DLL, DCM, PLL, BUFR, PMCD, and MMCM Components
When a Timespec Period specification on the input pad clock net is traced or translated
through a DCM, DLL, PLL, BUFR, PMCD. or MMCM component (also known as a
clock-modifying block), the derived or output clocks are constrained with new Period
constraints.

In order to generate the destination-element-timing group, during transformation each
clock output pin of the clock-modifying block is given:

• A new Timespec Period constraint

• A corresponding Timing Name Net constraint

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=35

36 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

The new Timespec Period constraint is based upon the manipulation of the clock
modifying block component. The transformation:

• Takes into account the phase relationship factor of the clock outputs

• Performs the appropriate multiplication or division of the Period requirement value

Transformation Conditions
The transformation occurs when:

• The Timespec Period constraint is traced into the clkin pin of the clock modifying
block component, and

• The group associated with the Period constraint:

• Is used in exactly one Period constraint.

• Is not used in any other timing constraints, including From:To (Multi-Cycle)
constraints or Offset constraints.

• Is not referenced or related to any other user group definition.

Example of New Period Constraints on DCM Outputs
If the Transformation Conditions are met, constraint (1) below is translated into constraints
(2) and (3) below.

(1) TIMESPEC "TS_clk20" = PERIOD "clk20_grp" 20 ns HIGH 50%;
(2) CLK0: TS_clk20_0=PERIOD clk20_0 TS_clk20*1.000000 HIGH 50.000000%
(3) CLK90: TS_clk20_90=PERIOD clk20_90 TS_clk20*1.000000 PHASE + 5.000000 nS HIGH 50.000000%

These constraints are based upon the clock structure shown in the following figure.
X-Ref Target - Figure 3-1

Report Message

The following message appears in the NGDBuild Report (design.bld) or the MAP
Report (design.mrp):

INFO:XdmHelpers:851 - TNM " clk20_grp ", used in period specification "TS_clk20", was traced
into DCM instance "my_dcm". The following new TNM groups and period specifications were
generated at the DCM output(s):

clk0: TS_clk20_0=PERIOD clk20_0 TS_clk20*1.000000 HIGH 50.000000%
clk90: TS_clk20_90=PERIOD clk20_90 TS_clk20*1.000000 PHASE + 5.000000 nS HIGH 50.000000%

Figure 3-1: New Period Constraints on DCM Outputs

X11061

CLK0

CLKIN

DCM

CLK90

clk20_0

clk20

clk20_90

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=36

Timing Closure User Guide www.xilinx.com 37
UG612 (v 14.3) October 16, 2012

Constraint System

Adjustment of Translated Period Constraints

If the CLKIN_DIVIDE_BY_2 attribute is set to True for the DCM in Figure 3-1, New Period
Constraints on DCM Outputs, the translated Period constraints are adjusted accordingly.
The following constraints are the result of this attribute:

CLK0: TS_clk20_0=PERIOD clk20_0 TS_clk20*2.000000 HIGH 50.000000%
CLK90: TS_clk20_90=PERIOD clk20_90 TS_clk20*2.000000 PHASE + 5.000000 nS HIGH 50.000000%

If Transformation Conditions Are Not Met

If the Transformation Conditions are not met:

• The Period constraint is not placed on the output or derived clocks of the clock
modifying block component, and

• An error or warning message appears in the NGDBuild Report.

Error Message Example

"ERROR:NgdHelpers:702 - The TNM "PAD_CLK" drives the CLKIN pin of CLKDLL "$I1". This TNM
cannot be traced through the CLKDLL because it is not used in exactly one PERIOD
specification. This TNM is used in the following user groups and/or specifications:

TS_PAD_CLK=PERIOD PAD_CLK 20000.000000 pS HIGH 50.000000%
TS_01=FROM PAD_CLK TO PADS 20000.000000 pS"

The original Timespec Period constraint:

• Is reported in the Timing Report.

• Shows 0 items analyzed.

The newly created Timespec Period constraints contain all paths associated with the clock
modifying block component.

If the Period constraint is not translated, and traces only to the clock modifying block
component:

• The Timing Report shows 0 items analyzed.

• No other Period constraints are reported.

If the Period constraint traces to other synchronous elements, the analysis includes only
those synchronous elements.

Synchronous Elements
Synchronous elements include:

• Flip Flops

• Latches

• Distributed RAM

• Block RAM

• Distributed ROM

• ISERDES

• OSERDES

• PPC405

• PPC440

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=37

38 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

• MULT18X18

• DSP48

• MGTs (GT, GT10, GT11, GTP, GTX, GTH)

• MCB

• SRL16

• EMAC

• FIFO (16, 18, and 36)

• PCIE

• TEMAC

Analysis With Net Period Constraint
When a Net Period constraint is applied to the input clock pad or net, this constraint is not
translated through the clock modifying block component. This can result in zero items or
paths analyzed for these constraints.

The Net Period constraint is analyzed only during MAP, PAR, and Timing analysis. When
MAP -timing and PAR call the timing tools, the timing tools manipulate the clock
modifying block for placement and routing, but not for the timing analysis Timing
Reports.

When a Timespec Period constraint is traced into an input pin on a clock modifying block,
NGDBuild or the translate Period transforms the original Timespec Period constraint into
new Timespec Period constraints based upon the derived output clocks. The NGDBuild
Report (design.bld) indicates this transformation.

MAP, PAR, and Timing Analyzer use the new derived clock Timespec Period constraints
that are propagated to the Physical Constraints File (PCF).

The original Timespec Period constraint:

• Is unchanged during this transformation.

• Is used as a reference for the new Timespec Period constraints.

Constraints Editor sees only the original Period constraint. Constraints Editor does not see
the newly transformed Period constraints.

Phase Keyword
The Phase keyword is used in the relationship between related clocks. The timing analysis
tools use this relationship for the Offset constraints and cross-clock domain path analysis.

The Phase keyword can be entered:

• In the UCF or NCF, or

• Through the translation of the DCM, DLL, and PLL components during NGDBuild.

If the phase shifted value of a DCM, PLL, or DLL component is changed in FPGA Editor,
the change is not reflected in the PCF file.

The timing analysis tools use the Phase keyword value in the PCF to emulate the DLL,
DCM, or PLL component phase shift value. In order to see the change that was made in
FPGA Editor, the PCF must also be modified manually with the corresponding change.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=38

Timing Closure User Guide www.xilinx.com 39
UG612 (v 14.3) October 16, 2012

Constraint System

DLL, DCM, and PLL Component Manipulation with Phase
The following table displays the new DCM, DLL, or PLL component output clock net
derived Timespec Period constraints. These new constraints are based upon the original
Period (TS_CLKIN) constraints. TS_CLKIN is expressed as a time value.

If TS_CLKIN is expressed as a frequency value, the multiply and divide operations are
reversed. If the DCM attributes FIXED_PHASE_SHIFT or VARIABLE_PHASE_SHIFT are
used, the amount of the phase-shifted value is included in the Phase keyword value.

The DCM attributes FIXED_PHASE_SHIFT or VARIABLE_PHASE_SHIFT phase shifting
amount on the DCM is not reflected in the following table.

Table 3-1: Transformation of Period Constraint Through DCM

Output Pin Period Value Phase Shift value

CLK0 TS_CLKIN * 1 None

CLK90 TS_CLKIN * 1 PHASE + (clk0_period * ¼)

CLK180 TS_CLKIN * 1 PHASE + (clk0_period * ½)

CLK270 TS_CLKIN * 1 PHASE + (clk0_period * ¾)

CLK2x TS_CLKIN / 2 None

CLK2x180 TS_CLKIN / 2 PHASE + (clk2x_period * ½)

CLKDV TS_CLKIN * clkdv_divide

(clkdv_divide = value of CLKDV_DIVIDE
property

(default = 2.0))

None

CLKFX TS_CLKIN / clkfx_factor

(clkfx_factor = value of CLKFX_MULTIPLY
property (default = 4.0) divided by value of
CLKFX_DIVIDE property

(default = 1.0))

None

CLKFX180 TS_CLKIN / clkfx_factor

(clkfx_factor = value of CLKFX_MULTIPLY
property (default = 4.0) divided by value of
CLKFX_DIVIDE property

(default = 1.0))

PHASE + (clkfx_period * ½)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=39

40 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Timing Group Creation with Timing Name or Timing Name Net Attributes
All design elements with the same Timing Name or Timing Name Net attribute are
considered a timing group. A design element may be in multiple timing groups (Timing
Name or Timing Name Net).

The Timing Name or Timing Name Net attributes can be applied to:

• Net Connectivity (NET)

• Instance or Module (INST)

• Instance Pin (PIN)

To ensure correct timing analysis, place only one Timing Name or Timing Name Net on
each element, driver pin, or macro driver pin.

Net Connectivity
Identifying groups by net connectivity allows the grouping of elements by specifying a net
or signal that eventually drives synchronous elements and pads.

This method identifies Multi-Cycle path elements that:

• Are controlled by a clock enable, and

• Can be constrained as a From:To (Multi-Cycle) constraint.

This method uses Timing Name Net or Timing Name on a net. The Timing Name attribute
is commonly used on HDL port declarations, which are directly connected to pads.

Timing Name Attribute Placed on Net or Signal

If a Timing Name attribute is placed on a net or signal, the constraints parser traces the
signal or net downstream to the synchronous elements.

Use a Timing Name attribute to identify the elements that make up a timing group. This
timing group can then be used in a timing constraint.

Those synchronous elements are tagged with the same Timing Name attribute. The Timing
Name attribute name is used in a Timing Specifications constraint or in a Timing
constraint.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=40

Timing Closure User Guide www.xilinx.com 41
UG612 (v 14.3) October 16, 2012

Constraint System

Timing Name on the CLOCK Pad or Net

The clock net in the following figure is traced forward to the two flip-flops.
X-Ref Target - Figure 3-2

Flagging a Common Input

A common input is typically a:

• Clock signal, or

• Clock enable signal

Flag a common input to group:

• Flip-flops

• Latches

• Other synchronous elements

The Timing Name is traced forward along the path (through any number of gates, buffers,
or combinatorial logic) until it reaches a flip-flop, input latch, or synchronous element.
Those elements are added to the specified Timing Name or time group.

Figure 3-2: Timing Name on the CLOCK Pad or Net Traces Downstream to the
Flip-Flops

X11062

D

CLOCK

Q D Q

OUT1

OUT2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=41

42 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Timing Name on the A0 Net Traced Through Combinatorial Logic to
Synchronous Elements (Flip-Flops)

The following figure shows the user of Timing Name on a net that traces forward to create
a group of flip-flops.
X-Ref Target - Figure 3-3

Using a Qualifier
When you place a Timing Name constraint on a net, use a qualifier to narrow the list of
elements in the time group. A qualified Timing Name is traced forward until it reaches the
first synchronous element that matches the qualifier type. The qualifier types are the
predefined time groups.

If that type of synchronous element matches the qualifier, the synchronous element is
given that Timing Name attribute. Whether or not there is a match, the Timing Name is not
traced through the synchronous element.

Predefined Time Groups
The following keywords are predefined time groups.

FFS

All SLICE and IOB edge-triggered flip-flops and shift registers

PADS

All I/O pads

DSPS

• All DSP48 in Virtex®-4 devices

• All DSP48E in Virtex-5 devices

Figure 3-3: Timing Name on the A0 Net Traced Through Combinatorial Logic to
Synchronous Elements (Flip-Flops)

AND

FD Q

O

Pxx

X11063

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1
2

1
2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2
D3

D2

Pxx

Pxx

Pxx

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=42

Timing Closure User Guide www.xilinx.com 43
UG612 (v 14.3) October 16, 2012

Constraint System

• All DSP48E1 in Virtex-6 and Xilinx® 7 series FPGA devices

• All DSP48A1 in Spartan®-6 devices

RAMS

All single-port and dual-port SLICE LUT RAMs and block Rams

MULTS

All synchronous and asynchronous multipliers in Virtex-4 and Virtex-5 devices:

HSIOS

• All GT and GT10 in Virtex-4 devices

• All GTP in Virtex-5 devices

• All GTHE1 and GTXE1 in Virtex-6 devices

• ALL GTPA1 in Spartan-6 devices

• All GTHE2 and GTXE2 in Xilinx 7 series FPGA devices

 CPUS

• All PPC405 in Virtex-4 devices

• All PPC450 in Virtex-5 devices

LATCHES

All SLICE level-sensitive latches

BRAMS_PORTA

Port A of all dual-port block RAMs

BRAMS_PORTB

Port B of all dual-port block RAMs

Differences Between Timing Name Net (TNM_NET) and Timing Name
(TNM) on a Net

The Timing Name Net constraint:

• Is equivalent to Timing Name on a net.

• Produces different results on pad nets.

The Translate Process or NGDBuild command never transfers a Timing Name Net
constraint from the attached net to an input pad, as it does with the Timing Name
constraint.

Use Timing Name Net only with nets. If you use Timing Name Net with any other object
(such as a pin or instance), the tool:

• Issues a warning.

• Ignores the Timing Name Net definition.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=43

44 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

In the case of a Timing Name attribute on a pad net, or the net between the IPAD and the
IBUF, the constraints parser traces the signal or net upstream to the pad element. See
Figure 3-4, Differences Between Timing Name and TNM_NET. The Timing Name Net
attribute is traced through the buffer to the synchronous elements.

In HDL designs, the IBUF output signal is the same as the IPAD or port name. There are no
differences between the Timing Name Net and Timing Name attributes. Both Timing
Name attributes trace downstream to the synchronous elements.

Propagation Rules for the Timing Name Net Constraint
Following are the propagation rules for the Timing Name Net (TNM_NET) constraint.

TNM_NET Applied to a Pad Net

If applied to a pad net, the Timing Name Net constraint propagates forward through the
IBUF elements and any other combinatorial logic to synchronous elements or pads.

TNM_NET Applied to a Clock-Pad Net

If applied to a clock-pad net, the Timing Name Net constraint propagates forward through
the clock buffer to synchronous elements or pads.

TNM_NET Applied to Certain Input Clock Nets

If applied to an input clock net of a DCM, DLL, PLL, PMCD, or BUFR component, and
associated with a Period constraint, the Timing Name Net constraint propagates forward
through the clock-modifying block to synchronous elements or pads.
X-Ref Target - Figure 3-4

In the figure above, a Timing Name associated with the IPAD signal includes only the PAD
symbol as the member of a time group. A Timing Name Net constraint associated with the
IPAD signal includes all synchronous elements after the IBUF as members of a time group.

Creating Time Groups Using IPAD Signal
The following examples show different ways of creating time groups using the IPAD
signal.

NET PADCLK TNM = PAD_grp;

• Use the padclk net to define the time group PAD_grp.

• Contains the IPAD element.

Figure 3-4: Differences Between Timing Name and TNM_NET

X11064

FF1

C

IPAD

PADCLK INTCLK

FF2

C

IBUF

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=44

Timing Closure User Guide www.xilinx.com 45
UG612 (v 14.3) October 16, 2012

Constraint System

NET PADCLK TNM = FFS "FF_grp";

• Use the padclk net to define the time group FF_grp.

• Contains no flip-flop elements.

NET PADCLK TNM_NET = FFS FF2_grp;

• Use the padclk net to define the timing group FF2_grp.

• Contains all flip-flop elements associated with this net.time

In the figure above, a TNM associated with the IBUF output signal can only include the
synchronous elements after the IBUF as members of a time group.

Time Groups Including Only the IBUF Output Signal
The following time groups include only the IBUF output signal.

NET INTCLK TNM = FFS FF1_grp;

• Use the intclk net to define the time group FF1_grp.

• Contains all flip-flop elements associated with this net.

NET INTCLK TNM_NET = RAMS Ram1_grp;

• Use the intclk net to define the time group Ram1_grp.

• Contains all distributed and block RAM elements associated with this net.

Instance or Hierarchy
When a Timing Name attribute is placed on a module or macro, the constraints parser
traces the macro or module down the hierarchy to the synchronous elements and pads.

The attribute traverses through all levels of the hierarchy rather than forward along a net
or signal. This feature is illustrated in:

• Figure 3-2, Timing Name on the CLOCK Pad or Net Traces Downstream to the
Flip-Flops

• Figure 3-3, Timing Name on the A0 Net Traced Through Combinatorial Logic to
Synchronous Elements (Flip-Flops)

Timing Name Attribute

Those synchronous elements are tagged with the same Timing Name attribute. The Timing
Name attribute name is used in a Timing Specifications or timing constraint. This method
uses a Timing Name on a block. Multiple instances of the same Timing Name attribute are
used to identify the time group.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=45

46 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

X-Ref Target - Figure 3-5

Figure 3-5: Grouping By Instances

Macros and Modules

A macro or module:

• Performs some general purpose higher level function.

• Typically has a lower level design that consists of:

• Primitives or elements, and/or

• Other macros or modules.

These components are connected together to implement the higher level function.

A Timing Name constraint attached to a module or macro indicates that all elements inside
the macro or module (at all levels of hierarchy below the tagged module or macro) are part
of the named time group.

Use the Keep Hierarchy attribute to ensure that the design hierarchy is maintained. This
feature is illustrated in the following figure.

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X11066

CLK

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=46

Timing Closure User Guide www.xilinx.com 47
UG612 (v 14.3) October 16, 2012

Constraint System

Using Wildcard Characters
Use wildcard characters to traverse the hierarchy of a design.

• A question mark (?) represents one character.

• An asterisk (*) represents multiple characters.

The following example uses a wildcard character to traverse the hierarchy where Level1
is a top level module:

• Level1/*

Traverses all blocks in Level1 and below

• Level1/*/

Traverses all blocks in Level1 but no further

X-Ref Target - Figure 3-6

Figure 3-6: Timing Name on Upper Left Hierarchy is Traced Down to Lower Level
Element

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS;RAMS:MEM

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X11065

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=47

48 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

The instances described below are either:

• Symbols on a schematics, or

• A symbol name as it appears in the EDIF netlist

Wildcard Traversing the Design Hierarchy
An example of the wildcard traversing the design hierarchy is shown in Figure 3-7,
Traversing Hierarchy with Wildcards, for the following instances:

INST *

All synchronous elements are in this timing group.

INST /*

All synchronous elements are in this timing group.

INST /*/

Top level elements or modules are in this timing group:

• A1

• B1

• C1

INST A1/*

All elements one or more levels of hierarchy below the A1 hierarchy are in this timing
group:

• A21

• A22

• A3

• A4

INST A1/*/

All elements one level of hierarchy below the A1 hierarchy are in this timing group:

• A21

• A22

INST A1/*/*

All elements two or more levels of hierarchy below the A1 hierarchy are in this timing
group:

• A3

• A4

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=48

Timing Closure User Guide www.xilinx.com 49
UG612 (v 14.3) October 16, 2012

Constraint System

INST A1/*/*/

All elements two levels of hierarchy below the A1 hierarchy are in this timing group:

• A3

INST A1/*/*/*

All elements three or more levels of hierarchy below the A1 hierarchy are in this timing
group:

• A4

INST A1/*/*/*/

All elements three levels of hierarchy below the A1 hierarchy are in this timing group:

• A4

INST /*/*22/

All elements with instance name of 22 are in this timing group:

• A22

• B22

• C22

INST /*/*22

All elements with instance name of 22 and elements one level of hierarchy below are in this
timing group:

• A22

• A3

• A4

• B22

• B3

• C22

• C3
X-Ref Target - Figure 3-7

Figure 3-7: Traversing Hierarchy with Wildcards

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X11067

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=49

50 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Instance Pin
Identifying groups by pin connectivity allows you to group elements by specifying a pin
that eventually drives synchronous elements and pads. This method uses Timing Name on
a pin.

If a Timing Name attribute is placed on a pin, the constraints parser traces the pin
downstream to the synchronous elements. A Timing Name attribute identifies the
elements that make up a timing group. This timing group can be then used in a timing
constraint. See the following figure. For more information, see Using a Qualifier.

X-Ref Target - Figure 3-8.

Grouping Constraints
Grouping constraints allow you to group similar elements together for timing analysis.
They can be defined in the following files:

• UCF

• NGC

• EDN

• EDIF

• EDF

The timing analysis is on timing constraints, which are applied to logical paths. The logic
paths typically start and stop at pads and synchronous elements.

The grouped elements signify the starting and ending points for timing analysis. These
starting and ending points can be based upon predefined groups, user-defined groups, or
both.

The timing groups are ideal for identifying groups of logic that operate at different speeds,
or that have different timing requirements.

Figure 3-8: Timing Name Placed on Macro Pin Traces Downstream to Synchronous
Elements

EN
D Q

EN

D Q
I
0

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X11068

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=50

Timing Closure User Guide www.xilinx.com 51
UG612 (v 14.3) October 16, 2012

Constraint System

Time Groups
Time groups are used in timing analysis. The user-defined groups and the predefined time
groups report to the timing analysis tools the start point and the end point for each path
being analyzed.

Time groups are used in the following constraints:

• Period

• Offset In

• Offset Out

• From:To (Multi-Cycle)

• Timing Ignore

When using a specific net or instance name, use its full hierarchical path name. This allows
the implementation tools to find the net or instance.

Use pattern matching wildcards to specify the element name when creating timing groups
with predefined timing group qualifiers. Place the pattern in parentheses after the timing
group qualifier.

Predefined Time Groups
The predefined time groups can reference the following (among others):

• Flip-flops

• Latches

• Pads

• RAMs

• CPUs

• Multipliers

• High-speed-inputs or outputs

You can use the predefined time group keywords globally, and to create user-defined
sub-groups. The predefined time groups:

• Are reserved keywords.

• Define the types of synchronous elements and pads in the FPGA device.

User-Defined Time Groups
The user-defined time group name:

• Is case sensitive

• Can overlap with:

• Other user-defined time groups

• Predefined time groups

This causes design elements to be in multiple time groups. In those cases, a register is in:

• The FFS predefined time group

• The clk time group associated with the Period constraint

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=51

52 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Defining User-Defined Time Groups

Use the following keywords to define user-defined time groups:

• TNM

• TNM_NET

• TIMEGRP

If the instance or net associated with the user-defined time group matches internal
reserved words, the timing group or constraint is rejected. The same is true for the
user-defined time group name.

Double Quotes

The NCF, UCF, and PCF constraints files may reject some instances or variable names
unless the names are enclosed in double quotes.

Enclose an instance or net name in double quotes if the name:

• Matches an internal reserved word, or

• Contains special characters such as the tilde (~) or dollar sign ($).

Xilinx recommends using double quotes on all net and instances.

Timing Name and Timing Name Net Attributes

All elements with the same Timing Name or Timing Name Net attributes are considered a
timing group.

For more information about Timing Name and Timing Name Net attributes, see Constraint
System in Chapter 3, Timing Constraint Principles.

Timing Group Attribute

Use the Timing Group attribute to:

• Combine existing pre-defined or user-defined time groups.

• Remove common elements from existing time groups, and create a new user-defined
time group.

• Create a new time group by pattern matching.

Pattern matching is grouping a set of objects that all have output nets that begin with
a given string.

Creating Subsets of an Existing Time Group

Use the following keywords to create subsets of an existing time group:

• Except

Remove common elements

• Rising

Rising edge synchronous elements

• Falling

Falling edge synchronous elements

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=52

Timing Closure User Guide www.xilinx.com 53
UG612 (v 14.3) October 16, 2012

Constraint System

Except Keyword

Use the Except keyword with a Timing Group attribute to remove elements from an
already-created time group.

The overlapping items to be removed from the original time group must be in the excluded
or Except time group.

If the excluded time group does not overlap with the original time group, none of the
design elements are removed. In that case, the new time group contains the same elements
as the original time group.

Rising and Falling Keywords

Use Timing Group to:

• Include multiple time groups.

• Exclude multiple time groups.

• Create sub-groups with the Rising and Falling keywords.

Use Rising and Falling to create groups based upon the synchronous element triggered
clocking edge (rising or falling edges).

Pattern Matching
Pattern matching on either net or instance names can define the user-defined time group.

Use wildcards to:

• Define a user-defined time group of symbols whose associated net name or instance
name matches a specific pattern.

• Generalize the group selection of synchronous elements.

• Shorten and simplify the full hierarchical path to the synchronous elements.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=53

54 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

A pattern may contain more than one wildcard character. For example, *AT? specifies any
net name that:

• Begins with one or more characters followed by AT, and

• Ends with any one character.

The following net names are included in *AT?:

• BAT2

• CAT4

• THAT9

Time Group Examples
Following are six time group examples.

Predefined Group of RAMs Time Group Example

The following time groups are created with a search string and a predefined group of
RAMs in a Multi-Cycle constraint.

• INST my_core TNM = RAMS my_rams;

This time group (my_rams) is the RAM components of the hierarchical block my_core

• TIMSPEC TS01 = FROM FFS TO my_rams 14.24ns;

• NET clock_enable TNM_NET = RAMS(address*) fast_rams;

This time group (fast_rams) is the RAM components driven by net name of
clock_enable with an output net name of address*

• TIMSPEC TS01 = FROM FFS TO fast_rams 12.48ns; OR

• TIMESPEC TS01 = FROM FFS TO RAMS(address*) 12.48ns;

The destination time group is based upon RAM components with an output net name
of address*

Table 3-2: Pattern Matching Symbols

Name Symbol Matches

Asterisk * Any string of zero or more
characters

Question mark ? A single character

Table 3-3: Pattern Matching Examples

String Indicates Examples

DATA* Any net or instance name
that begins with DATA

DATA1, DATA22, and
DATABASE

NUMBER? Any net names that begin
with NUMBER and ends with
one single character

NUMBER1 or NUMBERS, but
not NUMBER or NUMBER12

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=54

Timing Closure User Guide www.xilinx.com 55
UG612 (v 14.3) October 16, 2012

Constraint System

Predefined Group of FFS Time Group Example

The following time group is created with a search string and a predefined group of FFS in
a Multi-Cycle constraint.

TIMESPEC TS01 = FROM RAMS TO FFS(macro_A/Qdata?) 14.25ns;

The destination time group is based upon flip flop components with an output net named
macro_A/Qdata?

Predefined Group on a Hierarchical Instance Timing Group Example

The following time groups are created with the predefined group on a hierarchical
instance.

• INST macroA TNM = LATCHES latch_grp;

This time group (latch_grp) consists of the latch components of the hierarchical
instance macroA

• INST macroB TNM = RAMS memory_grp;

This time group (memory_grp) consists of the RAM components of the hierarchical
instance macroB

• INST tester TNM = overall_grp;

This time group (overall_grp) consists of synchronous components (such as RAMS,
FFS, LATCHES, and PADS) of the hierarchical instance tester.

Combining Time Groups Examples

The following examples show how to define a new time group by combining it with other
time groups.

• TIMEGRP "larger_grp" = "small_grp" "medium_grp";

Combines small_grp and medium_grp into a larger group called larger_grp

• TIMEGRP memory_and_latch_grp = latch_grp memory_grp;

Combines the elements of latch_grp and memory_grp.

Removing Time Groups Examples

The following examples use the Except keyword with the Timing Group attribute.

• TIMEGRP new_time_group = Original_time_group EXCEPT
a_few_items_time_grp;

Removes the elements of a_few_items_time_grp from Original_time_group

• TIMEGRP "medium_grp" = "small_grp" EXCEPT "smaller_grp";

• Creates a time group medium_grp from the elements of small_grp

• Removes the elements of smaller_grp

• TIMEGRP all_except_mem_and_latches_grp = overall_grp EXCEPT
memory_and_latch_grp;

Removes the common elements between memory_and_latch_grp and
overall_grp

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=55

56 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Clock Edges Time Group Examples

The following examples define a sub-group based upon the triggering clock edge.

• TIMEGRP "rising_clk_grp" = RISING clk_grp;

• Creates a time group rising_clk_grp

• Includes all rising edged synchronous elements of clk_grp

• TIMEGRP "rising_clk_grp" = FALLING clk_grp;

• Creates a time group rising_clk_grp

• Includes all falling edged synchronous elements of clk_grp

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=56

Timing Closure User Guide www.xilinx.com 57
UG612 (v 14.3) October 16, 2012

Constraint Priorities

Constraint Priorities
During design analysis, the timing analysis tools determine which constraint analyzes
which path. Each constraint type has different priority levels.

Priority Order
Following are the constraint priorities, from highest to lowest:

• Timing Ignore

• From:Thru:To

• Source and destination are user-defined groups

• Source or destination are user-defined groups

• Source and destination are pre-defined groups

• From:To

• Source and destination are user-defined groups

• Source or destination are user-defined groups

• Source and destination are pre-defined groups

• Offset

• Specific Data IOB (Net Offset)

• Time Group of Data IOB components (Grouped Offset)

• All Data IOB components (Global Offset)

• Period

This determination is based upon the constraint prioritization or which constraint
appears later in the PCF file, if there are overlapping constraints of the same priority.

• MAXSKEW and MAXDELAY

Net delay and net skew specifications are analyzed independently of path delay
analysis and do not interfere with one another. NET TIG do interact with the NET
constraints and take precedence.

Constraint Set Interaction

There are circumstances in which constraint priority may not operate as expected.
These cases include supersets, subsets, and intersecting sets of constraints. See the
following figure.

X-Ref Target - Figure 3-9

Figure 3-9: Interaction Between Constraint Sets

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=57

58 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

• In Case A, the Timing Ignore superset conflicts with the Period set.

• In Case B, the intersection of the Period and Timing Ignore sets creates an ambiguous
circumstance. In this instance, constraints may sometimes be considered as part of
Timing Ignore, and at other times part of Period.

Two Period Constraints Covering the Same Paths
If two Period constraints in the PCF file cover the same paths:

• The first Period constraint shows 0 paths analyzed in the Timing Report.

• The second Period constraint analyzes the paths.

To force the timing analysis tools to use the first Period constraint instead of the second
Period constraint:

• Use the Priority keyword on the Period constraints, or

• Use a Multi-Cycle or From:To constraint to cover these paths.

Use the Priority keyword with a value in order to (1) prioritize within a constraint type, or
(2) avoid a conflict between two timing constraints that cover the same path.

• The value can range from -255 to +255.

• The lower the value, the higher the priority.

• The value does not affect which paths are placed and routed first.

• The value affects only which constraint covers and analyzes the path with two timing
constraints of equal priority.

A constraint with a Priority keyword always has a higher priority than a constraint without
a Priority keyword.

Timing Constraint Priority Syntax
Use the following syntax to define the priority of a timing constraint:

• TIMESPEC TS_01 = FROM A_grp TO B_grp 10 ns PRIORITY 5;

TS_01 has a lower priority than TS_02.

• TIMESPEC TS_02 = FROM A_grp TO B_grp 20 ns PRIORITY 1;

Using the Priority Keyword
The Priority keyword:

• Can be applied only to Timespec constraints with TSidentifiers (for example, TS03).

• Can not be applied to Maxdelay, Maxskew, and Offset constraints.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=58

Timing Closure User Guide www.xilinx.com 59
UG612 (v 14.3) October 16, 2012

Constraint Priorities

Priority with a BUFGMUX Component

This situation can occur when two clock signals from the DCM drive the same BUFGMUX.
See the following figure.
X-Ref Target - Figure 3-10

Period Constraint Using Priority Examples

The following examples show a Period constraint using the Priority keyword:

TIMESPEC "TS_Clk0" = PERIOD "clk0_grp" 10 ns HIGH 50% PRIORITY 2;
TIMESPEC "TS_Clk2X" = PERIOD "clk2x_grp" TS_Clk0 / 2 PRIORITY 1;

Figure 3-10: Priority with a BUFGMUX Component

X11069

CLK0 = 100 Mhz

CLK2X = 200 Mhz

Frequency = ???

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=59

60 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Timing Constraints
Timing constraints provide a basis for the design of timing goals. Use global timing
constraints to set timing requirements that cover all constrainable paths.

Global timing constraints are the easiest way to:

• Provide coverage of constrainable connections.

• Guide the implementation tools to meeting timing requirements for all paths.

Global timing constraints constrain the entire design.

Fundamental Timing Constraints
The following fundamental timing constraints are needed for every design:

• Clock definitions with a Period constraint for each clock

Constrains synchronous element to synchronous element paths

• Input requirements with Global Offset In constraints

Constrains interfacing inputs to synchronous elements paths

• Output requirements with Global Offset Out constraints

Constrains interfacing synchronous elements to outputs to paths

• Combinatorial path requirements with Pad-to-Pad constraints

You can use more specific path constraints for Multi-Cycle or static paths.

• A Multi-Cycle path is a path between two registers or synchronous elements with a
timing requirement that is a multiple of the clock Period constraint for the registers or
synchronous elements.

• A static path does not include clocked elements such as Pad-to-Pad paths.

Timing Constraint Exceptions
Once you have laid the foundation of the timing constraints, specify and constrain the
exceptions.

Table 3-4: Timing Constraint Exceptions

For This Constraint... Create Exceptions With ...

Period • From: To (Multi-Cycle) constraints

Global Offset • Pad Timing Group based Offset
constraints

• Net based Offset constraints

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=60

Timing Closure User Guide www.xilinx.com 61
UG612 (v 14.3) October 16, 2012

Timing Constraints

Setting Timing Constraint Requirements
Xilinx recommends that you:

• Set the timing constraint requirements to the exact timing requirement value required
for a path.

• Do not over-tighten the requirement.

Tighter constraint requirements can:

• Lengthen place and route (PAR) or implementation runtimes.

• Increase memory usage.

• Degrade the quality of results (QOR).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=61

62 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Period Constraints
The Period (Clock Period Specification) constraint is a fundamental timing and synthesis
constraint.

Period constraints:

• Define clocks.

• Cover all synchronous paths within each clock domain.

• Cross check clock domain paths between related clock domains.

• Define clock duration.

• Can be configured to have different duty cycles.

• Are preferred over From: To constraints because Period constraints:

• Cover a majority of the paths.

• Decrease implementation tool runtime.

Clock Period Specification
The Clock Period Specification defines:

• The timing between synchronous elements (FFS, RAMS, LATCHES, HSIOS, CPUs,
and DSPS) clocked by a specific clock net that is terminated at a registered clock pin.
See the following figure.

• The timing between related clock domains based upon the destination clock domain.
X-Ref Target - Figure 3-11

Period Constraint on Clock Net
The Period constraint on a clock net analyzes all delays on all paths that terminate at a pin
with a setup and hold analysis relative to the clock net. A typical analysis includes the data
paths of:

• Intrinsic clock-to-out delay of the synchronous elements

• Routing and logic delay

• Intrinsic setup or hold delay of the synchronous elements

• Clock skew between the source and destination synchronous elements

• Clock phase (DCM phase and negative edge clocking)

• Clock duty cycles

Figure 3-11: Period Constraints Covering Register to Register Paths

D Q D QD Q

D Q D Q

X11070

FLOP1
ADATA

OUT1

OUT2

CLK

BUFG

CDATA

BUS[7:0]

FLOP2 FLOP3

FLOP4 FLOP5

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=62

Timing Closure User Guide www.xilinx.com 63
UG612 (v 14.3) October 16, 2012

Period Constraints

Included in Period Constraint
The Period constraint includes:

• Clock path delay in the clock skew analysis for global and local clocks

• Local clock inversion

• Setup and hold time analysis

• Phase relationship between related clocks

Related and derived clocks can be a function of another clock (* and /)

• DCM Jitter, Duty-Cycle Distortion, and DCM Phase Error for Virtex-4, DCM Jitter,
PLL Jitter, Duty-Cycle Distortion, and DCM Phase Error for Virtex-5, and new families
as Clock Uncertainty

• User-Defined System and Clock Input Jitter as Clock Uncertainty

• Unequal clock duty cycles (non 50%)

• Clock phase including DCM phase and negative edge clocking

Related Timespec Period Constraints
Xilinx recommends that you associate a Period constraint with every clock. The preferred
method is to use the Timespec Period constraint. Timespec allows you to define derived
clock relationships with other Timespec Period constraints.

An example of this complex derivative relationship is done through the DLL, DCM, PLL,
BUFR, PMCD, and MMCM Components component outputs. The derived relationship is
defined with one Timespec Period in terms of another Timespec Period. When a data path
goes from one clock domain to another clock domain, and the Period constraints are
related, the timing tools perform a cross-clock domain analysis. This is common with the
outputs from the DLL, DCM, PLL, BUFR, PMCD, and MMCM Components.

For more information about Timing Name and Timing Name Net attributes, see Constraint
System in Chapter 3, Timing Constraint Principles.

During cross-clock domain analysis of related Period constraints, the Period constraint on
the destination element covers the data path.

Related Period Constraints
In the following figure, TS_PERIOD#1 is related to TS_PERIOD#2, The data path is
analyzed by TS_PERIOD#2.
X-Ref Target - Figure 3-12

Figure 3-12: Related Period Constraints

X11071

Period #1 Period #2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=63

64 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

When Period constraints are related to each other, the design tools can determine the
inter-clock domain path requirements. See the following figure.

Period Constraint Syntax
Following is an example of the Period constraint syntax. The TS_Period_2 constraint
value is a multiple of the TS_Period_1 TIMESPEC.

TIMESPEC TS_Period_1 = PERIOD "clk1_in_grp" 20 ns HIGH 50%;
TIMESPEC TS_Period_2 = PERIOD "clk2_in_grp" TS_Period_1 * 2;

If the two Period constraints are not related in this method, the cross clock domain data
paths is not covered or analyzed by any Period constraint.

Unrelated Clock Domains
In the following figure, because CLKA and CLKB are not related or asynchronous to each
other, the data paths between register four and register five are not analyzed by either
Period constraint.
X-Ref Target - Figure 3-13

Paths Covered by Period Constraints
The Period constraint covers paths only between synchronous elements.

The following are not included in this analysis.

• Pads

NGDBuild issues a warning if pad elements are included in the Period time group.

• Analysis between unrelated or asynchronous clock domains

The Period constraint analysis includes the setup and hold analysis on synchronous
elements.

Setup Analysis

The setup analysis ensures that the data changes at the destination synchronous element
before the clock arrival. The data must become valid at its input pins at least a setup time
before the arrival of the active clock edge at its pin.

Figure 3-13: Unrelated Clock Domains

D Q D QD Q

D Q D Q

X11072

FLOP1 FLOP2 FLOP3
OUT1

OUT2

= Unconstrained Data Path

= Constrained Data Path

FLOP4 FLOP5

ADATA

CLKA

BUFG

BUFG

BUS [7:0]

CLKB

CDATA

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=64

Timing Closure User Guide www.xilinx.com 65
UG612 (v 14.3) October 16, 2012

Period Constraints

Setup Analysis Equation

The setup analysis equation is:

Setup Time = Data Path Delay + Synchronous Element Setup Time - Clock Path Skew

Setup Analysis Timing Report

The Timing Report analysis includes Clock Uncertainty and determines the slack value for
the setup analysis. The Data Path includes the Data Path Delay and the Synchronous
Element Setup Time.

Slack = Requirement - (Data Path - Clock Path Skew + Clock Uncertainty)

Setup Analysis Clock Uncertainty

As clock uncertainty increases, the setup margin decreases. See the following figure.
X-Ref Target - Figure 3-14.

Hold Analysis

The hold analysis ensures that the data changes at the destination synchronous element
after the clock arrival. The data must stay valid at its input pins at least a hold time after the
arrival of the active clock edge at its pin.

Hold Analysis Equation

The equation for the hold analysis is:

Hold Time = Clock Path Skew + Synchronous Element Hold Time - Data Path Delay

A hold time violation occurs when the positive clock skew is greater than the data path
delay.

Hold Analysis Timing Report

The Timing Report analysis:

• Includes clock uncertainty

• Determines the slack value for the hold analysis.

The data path includes:

• Data path delay

• Synchronous element hold time

Slack = Requirement - (Clock Path Skew + Clock Uncertainty - Data Path)

Figure 3-14: Reduced Setup Margin by Clock Uncertainty/Jitter

X11073

Input Example REG-REG Example

REG

Data

Clock

D

CLK

Q

REG

Data
D

CLK

Q

REG

D

CLK

Q

Valid DataData

Setup
Margin

Clock
Uncert

Setup
Margin

Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=65

66 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Hold Analysis Clock Uncertainty

As clock uncertainty increases, the hold margin decreases. See the following figure.
X-Ref Target - Figure 3-15

Both equations also include the Clock-to-Out time of the synchronous source element
as a portion of the data path delay.

In the following figure, because the positive clock skew is greater than the data path delay,
the timing analysis issues a hold violation.
X-Ref Target - Figure 3-16

X-Ref Target - Figure 3-17

The Timing Report does not list the hold paths unless the path causes a hold violation.

To report the hold paths for each constraint, use the -fastpaths switch in trce or
Report Fast Paths Option in Timing Analyzer. The following figure shows an
example of setup and hold times from the device data sheet. The setup and hold analysis in
the Timing Report is usually smaller than the values in the device data sheet.

While the values in the data sheet cover every pin and synchronous element, the Timing
Report is specific to the design for a particular pin or synchronous element.

Figure 3-15: Reduce Hold Margin by Clock Uncertainty/Jitter

Figure 3-16: Hold Violation (Clock Skew > Data Path)

Figure 3-17: Hold Violation Waveform

X11074

Input Example REG-REG Example

REG

Data

Clock

D

CLK

Q

REG

Data
D

CLK

Q

REG

D

CLK

Q

Valid DataData

Hold
Margin

Clock
Uncert

Hold
Margin

Clock

D QD Q

X11075

Source Destination
DATA_IN

CLK

DATA DATA_OUT1ns

2ns

X11076

DATA1

0 2 4 6 8 10 12
CLK

(at source FF)

CLK
(at destination FF)

DATA_IN
(at source input FF)

DATA
(at source output FF)

DATA
(at destination input FF)

DATA_OUT
(at destination output FF)

DATA2

DATA0 DATA1

DATA0 DATA1

DATA0 DATA1

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=66

Timing Closure User Guide www.xilinx.com 67
UG612 (v 14.3) October 16, 2012

Offset Constraints

Offset Constraints

Offset constraints:

• Are fundamental timing constraints.

• Define the timing relationship between:

• An external clock pad, and

• Its associated data-in pad or data-out pad.

This relationship is also known as constraining the pad to setup or clock to out paths on the
device.

Specifying Timing Interfaces With External Components
The following constraints specify timing interfaces with external components.

• Pad to Setup (Offset In Before)

Allows the external clock and external input data to meet the setup time on the internal
flip-flop.

• Clock to Out (Offset Out After)

Gives you more control over the setup and hold requirement of the downstream
devices and with respect to the external output data pad and the external clock pad.

• Offset In Before and Offset Out After

Allow you to specify the internal data delay from the input pads or to the output pads
with respect to the clock.

X-Ref Target - Figure 3-18

Figure 3-18: Setup/Hold Times from Data Sheet

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=67

68 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Specifying External Data and Clock Relationships
Alternatively, the Offset In After and Offset Out Before constraints allow you to specify
external data and clock relationship for the timing on the path to the input pads and to the
output pads for the Xilinx device.

The timing tools determine the internal requirements without the need of either of the
following constraints:

• From PADS To FFS

• From FFS To PADS
X-Ref Target - Figure 3-19For examples, see the following figures.

Included in Offset Constraints
Offset constraints:

• Include clock path delay in the analysis for each individual synchronous element.

• Include paths for all synchronous element types (such as FFS, RAMS, and LATCHES)

• Allow a global syntax that allows all inputs or outputs to be constrained with respect
to an external clock.

• Analyze setup and hold time violation on inputs.

Clocking Path Delays
Offset constraints account for the following clocking path delays when defined and
analyzed with the Period constraint:

• Provide accurate timing information and use the jitter defined on the associated
Period constraint.

• Increase the amount of time for input signals to arrive at synchronous elements (clock
and data paths are in parallel).

• Subtracts the clock path delay from the data path delay for inputs

Figure 3-19: Timing Reference Diagram of Offset In Constraint

X-Ref Target - Figure 3-20

Figure 3-20: Timing Reference Diagram of Offset Out Constraint

DATA_IN

CLK_SYS

TIN_AFTER

TIN_BEFORE

Tp

X11078

Q_OUT

CLK_SYS

TOUT_AFTER

TOUT_BEFORE

Tp

X11079

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=68

Timing Closure User Guide www.xilinx.com 69
UG612 (v 14.3) October 16, 2012

Offset Constraints

• Reduce the amount of time for output signals to arrive at output pins (clock and data
paths are in series).

• Adds the clock path delay to the data path delay for outputs

• Include clock phase introduced by a DLL or DCM component for each individual
synchronous element defined by the associated Period constraint.

• Include clock phase introduced by a rising or falling clock edge.

Initial Clock Edge
The initial clock edge for analysis of Offset constraints is defined by the High or Low
keyword of the Period constraint.

• High keyword => the initial clock edge is rising

• Low keyword => the initial clock edge is falling

The initial clock edge for analysis of an Offset constraint can override the Period
constraint’s default clock edge with the following keywords of the Offset constraints:

• Rising keyword => the initial clock edge is rising

• Falling keyword => the initial clock edge is falling

External Clock Pad and External Data Pads
Offset constraints define the relationship between:

• The external clock pad, and

• The external data pads

Synchronous Elements

The common component between the external clock pad and the external data pads are the
synchronous elements. If the synchronous element is driven by an internal clock net, a
From:To constraint is needed to analyze this data path.

Internal clocks generated by a DCM, PLL, DLL, PMCD, or BUFR component are
exceptions to this rule.

From:To Constraint

The From:To constraint provides similar analysis as the Offset constraints in the following
situations:

• Calculates whether a setup time is violated at a synchronous element whose data or
clock inputs are derived from internal nets

• Specifies the delay of an external output net derived from the Q output of an internal
synchronous element that is clocked from an internal net

Paths Covered by Offset Constraints
Offset constraints cover the following paths:

• From input pads to synchronous elements (Offset In)

• From synchronous elements to output pads (Offset Out)

See the following figure.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=69

70 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Offset constraints do not return any paths during timing analysis if the clock net that clocks
a synchronous element does not come from an input pad (for example, if it is derived from
another clock or from a synchronous element).
X-Ref Target - Figure 3-21

The Offset constraint is analyzed with respect to a single clock edge only. If the Offset
constraint must analyze multiple clock phases or clock edges, as in source synchronous
designs or dual-data rate applications, the Offset constraint must be manually adjusted by
the clock phase.

The Offset constraint does not optimize paths clocked by an internally generated clock.
Use From:To or Multi-Cycle constraints for these paths, taking into account the clock delay.

I/O Timing Analysis
Use the following option to obtain I/O timing analysis on internal clocks or derived clocks:

• Create a From:To or Multi-Cycle constraint on these paths, or

• Determine if the internal clock is related to an external clock signal.

• Change the requirement based upon the relationship between the two clocks.

For example, if:

• The internal clock is a divide by two version of the external clock, and

• The original requirement of the Offset Out with the internal clock was 10 ns, then

• The requirement of the Offset Out with the external clock is 20 ns.

Levels of Coverage
You can specify Offset constraints in three levels of coverage:

• Global Offset

Applies to all inputs or outputs for a specific clock.

• Group Offset

Identifies a group of input or outputs clocked by a common clock, that have the same
timing requirement.

• Net-Specific Offset

Specifies the timing by each input or output.

Figure 3-21: Circuit Diagram of Offset Constraints

D Q D QD Q

D Q D Q

X11080

FLOP FLOP FLOP
OUT1

OUT2

= Combinatorial Logic

FLOP FLOP

ADATA

CLK

BUFG

BUS [7:0]

CDATA

OFFSET IN OFFSET OUT

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=70

Timing Closure User Guide www.xilinx.com 71
UG612 (v 14.3) October 16, 2012

Offset Constraints

Group and Global Offset Constraints
Offset constraints with a specific scope override Offset constraints with a general scope.

• A Group Offset constraint overrides a Global Offset constraint for the same I/O.

• A Net-Specific Offset constraint overrides both Global Offset constraints and Group
Offset constraints.

This priority allows you to start with Global Offset constraints, then create Group Offset
constraints or Net-Specific Offset constraints for I/O with special timing requirements.

Reducing Memory Usage and Runtime

Use Global Offset constraints and Group Offset constraints to reduce memory usage and
runtime.

Using wildcards in a Net-Specific Offset constraint creates multiple Net-Specific Offset
constraints, not a Group Offset constraint.

Register Groups and Pad Groups

Group Offset constraints can include both a register group and a pad group. Group Offset
constraints allow you to group pads or registers, or both, to use the same requirement.

• Register groups

Identify path sources or destinations that have different requirements from or to a single
pad on a clock edge.

• Pad groups

Identify path sources or destinations that have different requirements from or to a group
of pads on the same clock edge.

You can group and constrain the pads and registers all at once, which is useful if a clock is
used on the rising and falling edge for inputs and outputs.

Rising and Falling Groups

The rising and falling groups require different Group Offset constraints.

In the following figure, registers A, B, and C are different time groups, even though these
registers have the same data and clock source.

The different time groups are:

• TIMEGRP AB = RISING FFS;

• TIMEGRP C = FALLING FFS;

This allows you to perform two different timing analyses for these registers.
X-Ref Target - Figure 3-22

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=71

72 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

CPLD Designs

For CPLD designs, clock inputs referenced by Offset constraints must be explicitly
assigned to a global clock pin using either a BUFG symbol or applying the BUFG=CLK
constraint to an ordinary input. Otherwise, the Offset constraint is not used during timing
driven optimization.

Figure 3-22: Offset with Different Timing Groups

NET CLK PERIOD = 20nS
OFFSET = IN 4nS BEFORE CLK TIMEGRP AB;
OFFSET = IN 6nS BEFORE CLK TIMEGRP C;

DATA

CLK

A B C

X11081

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=72

Timing Closure User Guide www.xilinx.com 73
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Constraints

From:To (Multi-Cycle) Constraints
A Multi-Cycle path is path that is allowed to take multiple clock cycles.

These types of paths are typically covered by a Period constraint by default. They may
cause errors because a Period constraint is a one-cycle constraint.

To eliminate these errors, place a specific Multi-Cycle constraint on the path. This removes
the path from the Period constraint.

Multi-Cycle Constraints
Multi-Cycle constraints:

• Are applied by using a From:To constraint.

• Have a higher priority than Period constraints and Offset constraints. It pulls paths
out of the lower priority constraints and the paths are analyzed by the Multi-Cycle
constraints.

• Can be tighter or looser than lower priority constraints.

• Constrain a specific path.

The specific path can:

• Be within the same clock domain, but

• Have a different requirement than the Period constraint.

Alternatively, the specific path with a data path, which crosses clock domains are
constrained with a Multi-Cycle constraint.

From:To Constraints
From:To constraints:

• Have a higher priority than Period constraints.

• Remove the specified paths from the Period constraint to the From:To constraint.

• Begin at a synchronous element and end at a synchronous element.

For example, if a portion of the design must run slower than the Period requirement, use a
From:To constraint for the new requirement.

The Multi-Cycle path can also mean that there is more than one cycle between each
enabled clock edge.

Declaring Start and End Points
When using a From:To constraint, specify the constrained paths by declaring the start
points and the end points.

The start points and the end points must be:

• Pre-specified time groups (such as PADS, FFS, LATCHES, RAMS), or

• User-specified time groups, or

• User-specified synchronous points (see TPSYNC).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=73

74 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

From or To Optional
From or To is optional when constraining a specific path.

• From Multi-Cycle constraint

Covers a From or source timing group to the next synchronous elements or pads
elements.

• To Multi-Cycle constraint

Covers all previous synchronous elements or pad elements to a To or destination time
group.

Following are some possible combinations:

• From:To

• From:Thru:To

• Thru:To

• From:Thru

• From

• To

• From:Thru:Thru:Thru:To

A From:To constraint can cover the Multi-Cycle paths that cover the path between clock
domains. For example, while one clock covers a portion of the design, and another clock
covers the rest, some paths go between these two clock domains. See the following figure.

You must have a clear idea of the design specifics, and take into account the multiple clock
domains.

X-Ref Target - Figure 3-23

Cross Clock Domain Paths
The cross clock domain paths between unrelated Period constraints are analyzed in the
Unconstrained Paths Report.

Create a Multi-Cycle or From:To constraint if these paths are related incorrectly, or if they
require a different timing requirement.

The From:To constraint can be a specific value, related to another Timing Specifications
identifier, or Timing Ignore. A path can be ignored during timing analysis with the label of
Timing Ignore.

Figure 3-23: Multi-Cycle Constraint Covers a Cross Clock Domain Path

D Q D QD Q

D Q D Q

X11082

FLOP FLOP FLOP
OUT1

OUT2

= Unconstrained Data Path

= Constrained Data Path

FLOP FLOP

ADATA

CLKA

BUFG

BUFG

BUS [7:0]

CLKB

CDATA

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=74

Timing Closure User Guide www.xilinx.com 75
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Constraints

Create a From:To constraint if the clocks are unrelated by the definition of the constraints,
but have valid paths between them.

Constraining Paths Between Two Clock Domains

To constrain the paths between two clock domains:

1. Create time groups based upon each clock domain.

2. Create a From:To for each direction that the paths pass between the two clock domains.

The following example shows a cross clock domain using a From:To constraint.

TIMESPEC TS_clk1_to_clk2 = FROM clk1 TO clk2 8 ns;

Constrain from time group clkA to timing group clkB to be 8 ns. See the following figure.
X-Ref Target - Figure 3-24

Pad-to-Pad Path
The Pad-to-Pad path (or asynchronous path) is a fundamental From:To constraint. The
From:Pads:To:Pads constraint covers the combinatorial path with the Pad instances of the
design as the start points and end points. Because these types of paths are asynchronous,
they are usually left unconstrained. See the following figure.

Following is an example of this type of constraint:

TIMESPEC TS_Pad2Pad = FROM PADS TO PADS 14.4 ns;
X-Ref Target - Figure 3-25

Slow Exceptions

In addition to using Multi-Cycle constraints in the Pad-to-Pad path, you can use
Multi-Cycle constraints to define a slow exception. This is an exception from the Period
constraint, which constrains the majority of the design.

Figure 3-24: Cross Clock Domain Path Analyzed Between CLK_A Clock Domain
and CLK_B Clock Domain

D Q D Q D Q

D Q

X11083

CLK_A

DATA

CLK_B

Figure 3-25: Pad-to-Pad Multi-Cycle Constraint Covers Path

D Q D QD Q

D Q D Q

X11084

FLOP FLOP FLOP
OUT1

OUT2

= Unconstrained Data Path

= Constrained Data Path

FLOP FLOP

ADATA

CLKA

BUFG

BUFG

BUS [7:0]

CLKB

CDATA

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=75

76 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Using a From:To Slow Exception in Conjunction with Period Constraint

The following figure shows the use of a From:To slow exception in conjunction with a
Period constraint. Xilinx does not recommend this method for slow exceptions.
X-Ref Target - Figure 3-26.

Using a Clock Enable Net to Define a Slow Exception

A Clock Enable net can define a slow exception. See the following figure. Xilinx
recommends this method for slow exceptions, which is based upon timing groups

NET clk_en TNM = slow_exception;
NET clk TNM = normal;
TIMESPEC TS01 = PERIOD normal 8 ns;
TIMESPEC TS02 = FROM slow_exception TO slow_exception TS01*2;

X-Ref Target - Figure 3-27

Ignoring a Path

Use a Timing Ignore constraint to ignore a path between flopa and flopb passing
through net netand. See Figure 3-28, Ignore a Path Between Registers.

To create this from the From:To:TIG constraint:

1. Tag flopa for time group FFA_grp

2. Tag flopb for time group FFB_grp

3. Create the following constraint:

TIMESPEC TS_FFA_to_FFB = FROM FFA_grp TO FFB_grp TIG;

Figure 3-26: Slow Exception Multi-Cycle Constraint Overlaps a Period Constraint

Figure 3-27: Slow Time Group Overlaps the Fast Time Group for a From:To
Exception

D QD Q

30 ns 60 ns
NET CLK PERIOD = 30ns

OUTD QIN

CL

X11085

FROM FLOP2 TO FLOP3 60

FROM FLOP2 TO FLOP3 60

FROM FLOP1 TO FLOP2 30

NET CLK PERIOD = 30ns

D QD Q

30 ns 60 ns

OUTD QIN

CLK

D Q

TNM=FAST
TNM=SLOW

TNM=FASTTNM=FAST
TNM=SLOW

D Q

30 ns 60 ns

OUTD

CE

Q

CE

IN

CLK

CLK_EN

X11086

TS02

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=76

Timing Closure User Guide www.xilinx.com 77
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Constraints

X-Ref Target - Figure 3-28

If a specific path must be constrained at a faster or slower than the Period constraint, create
a From:To for that path. If there are multiple paths between a source and destination
synchronous elements, create a From:Thru:To constraint to capture specific paths.

This constraint applies to a specific path that:

1. Begins at a source time group, then

2. Passes through intermediate points, and

3. Ends at a destination time group.

The source and destination time groups can be:

• User-defined time groups, or

• Predefined time groups

The intermediate points of the path are defined using the Tpthru constraint. There is no
limitation on the number of intermediate points in a From:To constraint.

From:Thru:To Constraint Example

Following is an example of a From:Thru:To constraint:

NET $3M17/On_the_Way TPTHRU = abc;
TIMESPEC TS_mypath = FROM my_src_grp THRU abc TO my_dest_grp 9 ns;

Constrain from time group my_src_grp through thru group abc to the time group
my_dest_grp to be 9 ns.

• The my_src_grp constrains the FIFO shown in the following figure.

• The my_dest_grp constrains the registers shown in the following figure.

Figure 3-28: Ignore a Path Between Registers

D QD Q

30 ns 60 ns
NET CLK PERIOD = 30ns

OUTD QIN

CL

X11085

FROM FLOP2 TO FLOP3 60

FROM FLOP2 TO FLOP3 60

FROM FLOP1 TO FLOP2 30

NET CLK PERIOD = 30ns

D QD Q

30 ns 60 ns

OUTD QIN

CLK

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=77

78 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

X-Ref Target - Figure 3-29

False Paths or Timing Ignore Constraint

A Net Timing Ignore constraint:

• Covers a specific net.

• Marks nets that are to be ignored for timing analysis purposes.

A From:To TIG constraint:

• Covers several paths between two synchronous groups or pad groups.

• Marks all nets going between the synchronous groups that are to be ignored for
timing analysis purposes.

See the following figure.
X-Ref Target - Figure 3-30

Defining a Non-Synchronous Path

Use the From:Thru:To constraint to define a non-synchronous path, such as using a
common bus for several modules.

The timing analysis constrains between these modules, even though the modules do not
interact with each other.

Because these modules do not interact with each other, you can use a constraint, or set the
From:To constraint to a large requirement. The following figure shows an example.

Figure 3-29: Net Tpthru Example with Previous From:Thru:To Constraint Example

D Q

D Q

D Q

X11088

MYFIFO

REG0

REG1

REG2

MY_REG_0

MY_REG_1

MY_REG_2

FIFORAM TPTHRU=ABC

Figure 3-30: Timing Ignore on a Path Between Two Flip-Flops

X11089

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=78

Timing Closure User Guide www.xilinx.com 79
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Constraints

Common Bus is the Through Point Example

NET DATA_BUS* TPTHRU = DataBus;
TIMESPEC TS_TIG = FROM FFS THRU DataBus TO FFS TIG;
OR
TIMESPEC TS_data_bus = FROM FFS THRU DataBus TO FFS 123ns;

Applying a Timing Point Synchronization Constraint

In addition to using a Timing Thru Points (Tpthru) constraint, you can apply a Timing
Point Synchronization (TPSYNC) constraint to specific pins or combinatorial logic in order
to force the timing analysis to stop or start at a non-synchronous point.

Constraint to Three-State Buffer With From:To

The Timing Point Synchronization constraint defines non-synchronous points as
synchronous points for Multi-Cycle constraints and analysis. The path to a three-state
buffer, for example, can be constrained with the Timing Point Synchronization constraint.

The following figure shows an example of constraining the path to the three-state buffer.

NET $3M17/Blue TPSYNC = Blue_S;
TIMESPEC TS_1A = FROM FFS TO Blue_S 15;

X-Ref Target - Figure 3-32

Paths Covered by From:To Constraints
The From:To constraint:

• Defines a timing requirement between two timing groups.

• Is used in conjunction with the Period and Offset In and Offset Out constraints

• Is used to define the fast and slow exceptions.

X-Ref Target - Figure 3-31

Figure 3-31: Common Bus is the Through Point

Figure 3-32: Constraint to Three-State Buffer With From:To

X11090

DATA_BUS(7:0)

Status_EnableControl_Enable

Control
Register

Status
Registers

D Q

X11091

RAM/
FFS/
PADS/
LATCH

$3M17/BLUE

TS_1A

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=79

80 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

The From:To constraint is highly versatile. See the following figure for examples for a
simple design in:

TIMESPEC TS_C2S = FROM FFS TO FFS 12 ns;
TIMESPEC TS_P2S = FROM PADS TO FFS 10 ns;
TIMESPEC TS_P2P = FROM PADS TO PADS 13 ns;
TIMESPEC TS_C2P = FROM FFS TO PADS 8 ns;

X-Ref Target - Figure 3-33

Changing Analysis from Period to From:To

When changing analysis from a Period constraint to From:To constraint, the number of
paths analyzed can be larger than the situation in which:

• A path is covered with a Period constraint, but

• The number of unconstrained paths does not increase.

The destination Timing Group for the From:To constraint probably contains distributed
Dual-Port Synchronous RAM components. Paths to these RAM components are both
synchronous and asynchronous.

• The path to the data input (D) is synchronous.

• The paths to the read address inputs (DPRA) are asynchronous.

A Period constraint constrains only synchronous paths. A From:To constraint constrains
both the synchronous and asynchronous paths to this RAM component.

• A path from a flip-flop to the D input of this RAM component is a synchronous path.
This data path is covered by a Period or a From:To constraint.

• A path from a flip-fop to the DPRA input of this RAM component is an asynchronous
path to the read address input. This data path is covered only by a From:To constraint.

Figure 3-33: All Paths Constrained on a Sample Design

D QD Q

X11092

CLK
OUT 1

TS_P2S TS_C2S TS_C2P

TS_P2P

OUT 2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=80

Timing Closure User Guide www.xilinx.com 81
UG612 (v 14.3) October 16, 2012

Grouping Constraint Syntax

Grouping Constraint Syntax
For information about grouping constraint syntax, see the following constraints in the
Constraints Guide (UG625), cited in Appendix A, Additional Resources.

• Timing Name

• Timing Name Net

• Timing Group

• Period

• Offset In

• Offset Out

• From:To (Multi-Cycle)

Creating Timing Constraints
You can create timing constraints in two ways:

• In the HDL design. See:

• Specifying Timing Constraints in XST

• Specifying Timing Constraints in Synplify

• With Constraints Editor (UCF)

Creating Timing Constraints With Constraints Editor
Constraints Editor uses information from the NGD file to create constraints in the UCF file.
Because Constraints Editor parses the NGD file, the exact UCF syntax for each design
element and constraint is used by the implementation tools.

The Constraints Editor allows you to create time groups and timing constraints. Because
the clocks and I/O components are supplied, you do not need the exact spelling of the
names. You need define only the timing requirements, and not the syntax, of the
constraints.

When creating specific time groups, element names are provided, and exceptions to the
global constraints can be made using those groups.

Condensing the Size of the Time Groups
The Constraints Editor does not create time groups or constraints with wildcards. You
must manually modify the UCF to condense the size of the time groups. The condensing of
the size of the time groups in the UCF is done with wildcards on the unique portions of the
design element and the common portion remains.

Condensed Time Groups Example

INST my_bus* TNM = my_output_bus_grp;

The asterisk (*) wildcard causes the constraint system to apply the Timing Name attribute
to all instances with the base name my_bus.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=81

82 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 3: Timing Constraint Principles

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=82

Timing Closure User Guide www.xilinx.com 83
UG612 (v 14.3) October 16, 2012

Chapter 4

Specifying Timing Constraints in XST

This chapter discusses the methods for specifying timing constraints in the Xilinx®
Synthesis Tool (XST).

For information on specifying timing constraints in Synplify, see Chapter 5, Specifying
Timing Constraints in Synplify.

Syntax Examples for XST Timing Constraints below gives syntax examples for individual
Xilinx timing constraints in VHDL, Verilog, and XCF.

For more information, see:

• Synthesis and Simulation Design Guide (UG626), cited in Appendix A, Additional
Resources.

• XST User Guide for Virtex®-6, Spartan®-6, and 7 Series Devices (UG687), cited in
Appendix A, Additional Resources.

Applying XST Timing Constraints
Apply XST timing constraints with:

• The -glob_opt command line switch, or

• The XST Constraint File (XCF)

Since timing constraints specified in the source code do not propagate to the netlist, all
timing constraints must be specified in the UCF.

Timing Model
The timing model used by XST for timing analysis takes into account:

• Logic delays

Logic delays data are identical to the delays reported by TRACE (Timing Analyzer)
after Place and Route.

• Net delays

The Net delay model is estimated based on the fanout load.

These delays are:

• Highly dependent on the speed grade that can be specified to XST.

• Dependent on the selected technology.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=83

84 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

XCF Constraint Priority
Constraints are processed in the following order:

1. Specific constraints on signals

2. Specific constraints on top module

3. Global constraints on top module

For example, constraints on two different domains or two different signals have the same
priority (that is, PERIOD clk1 can be applied with PERIOD clk2).

Methods for Specifying Timing Constraints in XST
Use any of the following to specify timing constraints in XST:

• Hardware Description Language (HDL) code

• XST Constraint File (XCF)

• The -global_opt command line switch

To specify timing constraints before synthesis:

• Specify the timing constraints in your design:

• HDL

- VHDL

- Verilog

• Schematic

OR

• Specify the timing constraints in an XCF.

Specifying Timing Constraints in HDL
Timing constraints specified in HDL are written in the style of the attributes.

Specifying Timing Constraints in XCF
XST supports an XST Constraints File (XCF) syntax to specify synthesis and timing
constraints. The constraint file method allows you to use the native XCF timing constraint
syntax.

XST Supported XCF Constraints

Using the XCF syntax, XST supports constraints such as:

• Timing Name Net

• Timing Group

• Period

• Timing Ignore

• From-To

This includes wildcards and hierarchical names.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=84

Timing Closure User Guide www.xilinx.com 85
UG612 (v 14.3) October 16, 2012

Methods for Specifying Timing Constraints in XST

Timing constraints are not written to the NGC file by default. Timing constraints are
written to the NGC file only when:

• Write Timing Constraints is checked in ISE in Process > Properties, or

• The -write_timing_constraints option is specified in the command line.

XCF Syntax Limitations

XCF syntax has the following limitations:

• Nested model statements are not supported.

• Instance or signal names listed between the BEGIN MODEL statement and the END
statement are only those visible inside the entity.

• Hierarchical instance or signal names are not supported.

Specifying Timing Constraints Using the -glob_opt Command Line Switch
Timing constraints supported by XST can also be applied using the -glob_opt command
line switch. Using the -glob_opt command line switch is the same as selecting:

Process > Properties > Synthesis Options > Global Optimization Goal.

This method allows you to apply global timing constraints to the entire design. You cannot
specify a value for these constraints. XST optimizes them for the best performance. These
constraints are overridden by constraints specified in the constraints file.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=85

86 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Syntax Examples for XST Timing Constraints
The sections below give syntax examples for individual Xilinx timing constraints in
VHDL, Verilog, and an XCF file. Not all constraints give examples of all three methods.

• Asynchronous Register

• Clock Signal

• Maximum Delay

• Maximum Delay

• Maximum Skew

• Offset

• Period

• System Jitter

• NET/PIN/INST Timing Ignore

• Timing Group

• Timing Specifications

• Timing Name

• Timing Name Net

If you specify timing constraints in the XCF file, Xilinx strongly suggests that you to use the
forward slash (/) character as a hierarchy separator, instead of the underscore character
(_).

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=86

Timing Closure User Guide www.xilinx.com 87
UG612 (v 14.3) October 16, 2012

Asynchronous Register

Asynchronous Register
The Asynchronous Register (ASYNC_REG) constraint can be attached only on registers or
latches with asynchronous input (D input or the CE input).

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

Asynchronous Register VHDL Syntax
attribute ASYNC_REG : string;
attribute ASYNC_REG of instance_name: signal is "{TRUE|FALSE}";

Asynchronous Register VHDL Syntax Example
architecture behavioral of top_yann_mem_infrastructure is
begin
signal sys_rst : std_logic;
attribute ASYNC_REG : string;
attribute ASYNC_REG of sys_rst: signal is "TRUE";
--source code
End behavioral;

Asynchronous Register Verilog Syntax
(* ASYNC_REG = "{TRUE|FALSE}" *)

Asynchronous Register Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
 wire clk_0;
 wire clk_90;
 wire clk_200;
(* ASYNC_REG = "TRUE" *)
 reg sys_rst;
// source code
End module;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=87

88 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Clock Signal
Clock Signal applies to all FPGA devices. Clock Signal does not apply to CPLD devices.

If a clock signal goes through combinatorial logic before being connected to the clock input
of a flip-flop, XST cannot identify which input pin or internal signal is the real clock signal.
The Clock Signal (CLOCK_SIGNAL) constraint allows you to define the clock signal.

 Clock Signal VHDL Syntax
attribute clock_signal : string;
attribute clock_signal of signal_name : signal is "{yes|no}";

 Clock Signal VHDL Syntax Example
entity top_yann_mem is
port (cntrl0_DDR2_DQ : inout std_logic_vector(71 downto 0);
SYS_CLK_P : in std_logic;
SYS_CLK_N : in std_logic;
CLK200_P : in std_logic;
CLK200_N : in std_logic
);

attribute clock_signal : string;
attribute clock_signal of clk200_p : signal is "yes";
end entity;

 Clock Signal Verilog Syntax
(* clock_signal = "{yes|no}" *)

 Clock Signal Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
(* clock_signal = "yes" *)
wire clk_0;
 wire clk_90;
 wire clk_200;
 reg sys_rst;
// source code
End module;

 Clock Signal XCF Syntax
BEGIN MODEL "entity_name"
NET "primary_clock_signal" clock_signal={yes|no|true|false};
END;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=88

Timing Closure User Guide www.xilinx.com 89
UG612 (v 14.3) October 16, 2012

Clock Signal

 Clock Signal XCF Syntax Example

BEGIN MODEL "top_yann_mem"
NET "CLK200_P" clock_signal = yes;
END;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=89

90 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Maximum Delay
The Maximum Delay (MAXDELAY) constraint:

• Defines the maximum allowable delay on a net.

• Applies to the nets in FPGA devices only.

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

 Maximum Delay VHDL Syntax
attribute maxdelay of signal_name: signal is "value [units]";

where

• value is a positive integer;

Valid units are ps, ns, us, ms, Hz, kHz, MHz. The default is ns.

 Maximum Delay VHDL Syntax Example
entity top_yann_mem_data_path_iobs_0 is
port (
 CLK : in std_logic;
 dqs_delayed : out std_logic_vector(31 downto 0);
 READ_EN_DELAYED_RISE : out std_logic_vector(31 downto 0);
 READ_EN_DELAYED_FALL : out std_logic_vector(31 downto 0);
);
attribute maxdelay: string;
attribute maxdelay of READ_EN_DELAYED_RISE: signal is "800 ps";
attribute maxdelay of READ_EN_DELAYED_FALL: signal is "800 ps";
end entity;

 Maximum Delay Verilog Syntax
(*MAXDELAY = "value [units]" *)

 Maximum Delay Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
wire clk_0;
 wire clk_90;
 wire clk_200;
 (*MAXDELAY= " 800 ps" *)
 wire read_en;
 reg sys_rst;
// source code
End module;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=90

Timing Closure User Guide www.xilinx.com 91
UG612 (v 14.3) October 16, 2012

Maximum Skew

Maximum Skew
The Maximum Skew (MAXSKEW) constraint controls the amount of skew on a net. Skew
is the difference between the delays of all loads driven by the net.

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

Maximum Skew VHDL Syntax
attribute maxskew: string;
attribute maxskew of signal_name : signal is "allowable_skew [units]";

where

• allowable_skew is the timing requirement

• valid units are ms, micro, ns, or ps. The default is ns.

Maximum Skew VHDL Syntax Example
entity top_yann_mem_infrastructure is
port (
 SYS_CLK_P: in std_logic;
 SYS_CLK_N: in std_logic;
 CLK200_P: in std_logic;
 CLK200_N: in std_logic;
 CLK : out std_logic;
 REFRESH_CLK : out std_logic;
 sys_rst : out std_logic;
);
attribute maxskew: string;
attribute maxskew of sys_rst : signal is "3 ns";
end entity;

Maximum Skew Verilog Syntax
(* MAXSKEW = "allowable_skew [units]" *)

where

• allowable_skew is the timing requirement

• valid units are ms, micro, ns, or ps. The default is ns.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=91

92 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Maximum Skew Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
wire clk_0;
 wire clk_90;
 wire clk_200;
 (*MAXSKEW= " 3 ns" *)
 wire read_en;
 reg sys_rst;
// source code
End module;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=92

Timing Closure User Guide www.xilinx.com 93
UG612 (v 14.3) October 16, 2012

Offset

Offset
The Offset (OFFSET) constraint:

• Specifies the timing relationship between:

• An external clock, and

• Its associated data-in or data-out pin.

• Is used only for pad related signals.

• Cannot be used to extend the arrival time specification method to the internal signals.

For more information, see Chapter 3, Timing Constraint Principles.

Offset XCF Syntax
OFFSET = {IN|OUT} offset_time [units] {BEFORE|AFTER}
clk_name [TIMEGRP group_name];

where

• offset_time [units]

The difference in time between the capturing clock edge and the start of the data to be
captured.

The time can be specified with or without explicitly declaring the units. If no units are
specified, the default value is nanoseconds (ns). The valid values are ps, ns, micro, and
ms.

• BEFORE|AFTER

Defines the timing relationship of the start of data to the clock edge.

The best method of defining the clock and data relationship is to use the BEFORE
option. BEFORE describes the time the data begins to be valid relative to the capturing
clock edge.

• Positive values of BEFORE indicate that the data begins before the capturing clock
edge.

• Negative values of BEFORE indicate that the data begins after the capturing clock
edge.

• clk_name

Defines the fully hierarchical name of the input clock pad net.

• Valid keyword

Not applicable to the Offset constraint.

Offset XCF Syntax Example
OFFSET = IN 2 ns BEFORE "CLK200_N" ;
OFFSET = IN 3.85 ns BEFORE "SYS_CLK_P" ;
OFFSET = OUT 4 ns AFTER "CLK200_N" ;
OFFSET = OUT 7 ns AFTER "SYS_CLK_P" ;
NET "main_00/top_00/iobs_00/data_path_iobs_00/v4_dq_iob_0/DDR_DQ" TNM=
DDR2_DQ_Grp;
OFFSET = OUT 6.7 ns AFTER "SYS_CLK_P" TIMEGRP DDR2_DQ_Grp;
OFFSET = IN 3.2 ns BEFORE "SYS_CLK_P" TIMEGRP DDR2_DQ_Grp ;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=93

94 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Period
The Period (PERIOD) constraint is a basic timing constraint and synthesis constraint.

A clock Period specification checks timing between all synchronous elements within the
clock domain as defined in the destination element group. The Period specification is
attached to the clock net.

The timing analysis tools:

• Take into account any inversions of the clock net at register clock pins and clock
phase.

• Include all synchronous item types in the analysis.

• Check for hold violations.

For more information, see Chapter 3, Timing Constraint Principles.

Period VHDL Syntax
The Period constraint applies only to a specific clock signal.

attribute period: string;
attribute period of signal_name : signal is "period [units]";

Period VHDL Syntax Example
entity top_yann_mem is
port (cntrl0_DDR2_DQ : inout std_logic_vector(71 downto 0);
SYS_CLK_P : in std_logic;
SYS_CLK_N : in std_logic;
CLK200_P : in std_logic;
CLK200_N : in std_logic
);

attribute period: string;
attribute period of SYS_CLK_P : signal is "5 ns";
end entity;

Period Verilog Syntax
The Period constraint applies only to a specific clock signal.

(* PERIOD = "period [units]" *)

where

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=94

Timing Closure User Guide www.xilinx.com 95
UG612 (v 14.3) October 16, 2012

Period

Period Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
(*PERIOD = "5 ns"*)
wire clk_0; // The clk_0 is assigned with the period of 5 ns
 wire clk_90;
 wire clk_200;
 wire read_en;
 reg sys_rst;
// source code
End module;

Timing Specifications Period XCF Syntax
This is the primary method for specifying Period XCF syntax. Xilinx recommends this
version.

TIMESPEC "TSidentifier"=PERIOD "TNM_reference period" [units]
[{HIGH |LOW} [high_or_low_time [hi_lo_units]]] INPUT_JITTER value [units];

NET Period XCF Syntax
This is the secondary method for specifying Period XCF syntax. Xilinx DOES NOT
recommend this version.

NET "net_name" PERIOD=period [units]
[{HIGH|LOW}[high_or_low_time[hi_lo_units]]];

where

• identifier is a reference identifier that has a unique name

• TNM_reference is the identifier name that is attached to a clock net (or a net in the
clock path) using the Timing Name or Timing Name Net constraint. When a Timing
Name Net constraint is traced into the CLKIN input of a DLL, DCM or PLL
component, new Period specifications may be created at the DLL, DCM, or PLL
outputs.

• period is the required clock period.

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ms, micro, or % to
indicate the intended units.

• HIGH or LOW indicates whether the first pulse is to be High or Low.

HIGH and LOW values are not taken into account during timing estimation and
optimization. They are propagated to the final netlist only if
WRITE_TIMING_CONSTRAINTS = yes.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=95

96 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

• high_or_low_time is the optional HIGH or LOW time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no
high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default
is nanoseconds (ns), but the high_or_low_time number can be followed by ps,
micro, ms, or % if the HIGH or LOW time is an actual time measurement.

The following statement assigns a clock period of 40 ns to the net named CLOCK, with the
first pulse being HIGH and having duration of 25 nanoseconds.

NET "CLOCK" PERIOD=40 HIGH 25;

The following statement assigns a clock period of 5 ns in the style of Timing Specifications.

NET "infrastructure0/SYS_CLK_IN" TNM_NET = "SYS_CLK";
TIMESPEC "TS_SYS_CLK" = PERIOD "SYS_CLK" 5 ns HIGH 50 %;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=96

Timing Closure User Guide www.xilinx.com 97
UG612 (v 14.3) October 16, 2012

System Jitter

System Jitter
The System Jitter (SYSTEM_JITTER) constraint specifies the system jitter of the design.
System Jitter depends on various design conditions, such as the number of flip-flops
changing at one time and the number of I/Os changing.

System Jitter applies to all clocks within a design. System Jitter can be combined with the
Input Jitter keyword on the Period constraint to generate the Clock Uncertainty value
shown in the Timing Report.

For more information, see Chapter 3, Timing Constraint Principles.

System Jitter is another way to specify an additional timing margin where there is no real
way to characterize the jitter of the system. This constraint is useful to test the limitations of
designs with a tight timing margin. System Jitter is used within the clock uncertainty
calculation for all constraints that analyze a clock in the design.

Some devices have a default System Jitter included in the speed files. This can be checked
by using SpeedPrint.

Another way to perform the same test is to modify the Input Jitter for a specific input clock.
This works only for a specific clock domain rather than the full system.

System Jitter VHDL Syntax
attribute SYSTEM_JITTER: string;
attribute SYSTEM_JITTER of
{component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is "value ps";

where

• value is a numerical value. The default is ps.

System Jitter VHDL Syntax Example
entity top_yann_mem is
port (cntrl0_DDR2_DQ : inout std_logic_vector(71 downto 0);
SYS_CLK_P : in std_logic;
SYS_CLK_N : in std_logic;
CLK200_P : in std_logic;
CLK200_N : in std_logic
);

attribute SYSTEM_JITTER : string;
attribute SYSTEM_JITTER of top_yann_mem: entity is "10 ps";
end entity;

System Jitter Verilog Syntax
(* SYSTEM_JITTER = "value ps" *)

where

• value is a numerical value. The default is ps.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=97

98 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

System Jitter Verilog Syntax Example
module mig_22
 (inout [7:0] cntrl0_ddr2_dq,
 output [14:0] cntrl0_ddr2_a,
 input sys_clk_p,
 input sys_clk_n,
 input clk200_p,
 input clk200_n,
 input sys_reset_in_n,
 inout [0:0] cntrl0_ddr2_dqs
);
(*SYSTEM_JITTER = "10 ps"*)
wire clk_0; // The clk_0 is assigned with system_jitter of 10 ps
 wire clk_90;
 wire clk_200;
 wire read_en;
 reg sys_rst;
// source code
End module;

System Jitter XCF Syntax
MODEL "entity_name" SYSTEM_JITTER = value ps;

System Jitter XCF Syntax Example
MODEL "top_yann_mem" SYSTEM_JITTER = 10;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=98

Timing Closure User Guide www.xilinx.com 99
UG612 (v 14.3) October 16, 2012

NET/PIN/INST Timing Ignore

NET/PIN/INST Timing Ignore
The Timing Ignore (TIG) constraint:

• Is a basic timing constraint.

• Is a synthesis constraint.

• Applies to FPGA devices only.

• Does not apply to CPLD device.

Timing Ignore causes paths that fan forward from the point of application (of Timing
Ignore) to be treated as if they do not exist (for the purposes of the timing model) during
implementation.

For more information, see Chapter 3, Timing Constraint Principles.

Timing Ignore XCF Syntax
NET "net_name" TIG;
PIN "ff_inst.RST" TIG=TS_1;
INST "instance_name" TIG=TS_2;
TIG=TSidentifier1,..., TSidentifiern

where

• identifier refers to a timing specification that should be ignored

When attached to an instance, Timing Ignore is pushed to the output pins of that instance.
When attached to a net, Timing Ignore pushes to the drive pin of the net. When attached to
a pin, Timing Ignore applies to the pin.

Timing Ignore XCF Syntax Example
NET "main_?0/top_?0/ddr2_controller_?0/load_mode_reg*" TIG;

The following statement specifies that the timing specifications TS_fast and
TS_even_faster are ignored on all paths fanning forward from the net RESET.

NET "RESET" TIG=TS_fast, TS_even_faster;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=99

100 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Timing Group
The Timing Group (TIMEGRP) constraint is a basic grouping constraint.

In addition to naming groups using the Timing Name identifier, you can also define
groups in terms of other groups. Place Timing Group constraints in a constraints file such
as an XST Constraint File (XCF) or a Netlist Constraints File (NCF).

For more information, see Chapter 3, Timing Constraint Principles.

 Timing Group XCF Syntax
TIMEGRP newgroup = existing_grp1 existing_grp2 [existing_grp3 ...];

where

• newgroup is a newly created group that consists of existing groups created by means
of Timing Name constraints, predefined groups or other TIMEGRP attributes

Timing Group XCF Syntax Example
TIMEGRP Top_Group = GroupA GroupB GroupC;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=100

Timing Closure User Guide www.xilinx.com 101
UG612 (v 14.3) October 16, 2012

Multi-Cycle Path

Multi-Cycle Path
The Multi-Cycle Path constraint specifies a timing constraint between two groups.

For more information, see Chapter 3, Timing Constraint Principles.

Multi-Cycle Path XCF Syntax
TIMESPEC TSname =FROM "group1" TO "group2" value;

where

• TSname must always begin with TS. Any alphanumeric character or underscore may
follow.

• group1 is the source timing group

• group2 is the destination timing group

• value is ns by default. Other possible values are MHz or another timing specification
such as TS_C2S/2 or TS_C2S*2.

XST supports the From-To constraint with the following limitations:

• From-Thru-To is not supported

• Linked timing specification is not supported

• Pattern matching for predefined groups is not supported, such as:

TIMESPEC TS_1 = FROM FFS(machine/*) TO FFS 2 ns;

Multi-Cycle Path XCF Syntax Example
TIMESPEC TS_MY_PathA = FROM "my_src_grp" TO "my_dst_grp" 23.5 ns;
TIMESPEC TS_ DQS_UNUSED = FROM FFS TO "control_unused_dqs" TIG;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=101

102 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Timing Specifications
The Timing Specifications (TIMESPEC) constraint:

• Is a basic timing related constraint.

• Serves as a placeholder for timing specifications (TS attribute definitions).

A TS attribute:

• Defines the allowable delay for paths.

• Begins with the letters TS.

• Ends with a unique identifier that can consist of:

• Letters

• Numbers

• The underscore character (_).

The number of Timing Specification constraints can significantly impact the runtime and
memory usage of the implementation and analysis tools.

Timing Specifications XCF Syntax
TIMESPEC "TSidentifier"=PERIOD "timegroup_name" value [units];
TIMESPEC "TSidentifier"=FROM "source_group" TO "dest_group" value units;

where

• TSidentifier is a unique name for the TS attribute

• value is a numerical value. It defines the maximum delay for the attribute.
Nanoseconds (ns) are the default units for specifying delay time in TS attributes. You
can also specify delay with other units, such as picoseconds (ps) or megahertz (MHz).

• units can be ms, micro, ps, or ns.

Keywords, such as FROM, TO, and TS, appear in the documentation in upper case. You
can specify them in the Timing Specifications primitive in either upper or lower case.

Timing Specifications XCF Syntax Examples
• Defining a Maximum Allowable Delay Timing Specifications XCF Syntax Example

• Defining a Clock Period XCF Syntax Example

• Specifying Derived Clocks XCF Syntax Example

• Timing Ignore Paths XCF Syntax Examples

Defining a Maximum Allowable Delay Timing Specifications
XCF Syntax Example

TIMESPEC "TSidentifier"=FROM "source_group" TO "dest_group" allowable_delay [units];

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=102

Timing Closure User Guide www.xilinx.com 103
UG612 (v 14.3) October 16, 2012

Timing Specifications

Defining a Clock Period XCF Syntax Example
Defining a clock period allows more complex derivative relationships to be defined as well
as a simple clock period.

TIMESPEC "TSidentifier"=PERIOD "TNM_reference" value [units] [{HIGH | LOW}
[high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where

• identifier is a reference identifier with a unique name

• TNM_reference is the identifier name attached to a clock net (or a net in the clock
path) using a Timing Name constraint

• value is the required clock period

• units is an optional field to indicate the units for the allowable delay. The default
units are nanoseconds (ns), but the timing number can be followed by micro, ms, ps,
ns, GHz, MHz, or kHz to indicate the intended units

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default
is nanoseconds (ns), but the High or Low time number can be followed by ps, micro,
ms, ns or % if the High or Low time is an actual time measurement.

Specifying Derived Clocks XCF Syntax Example
TIMESPEC "TSidentifier"=PERIOD "TNM_reference" "another_PERIOD_identifier" [/ | *] number
[{HIGH | LOW} [high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where

• TNM_reference is the identifier name attached to a clock net (or a net in the clock
path) using a Timing Name constraint

• another_PERIOD_identifier is the name of the identifier used on another
period specification

• number is a floating point number

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default
is nanoseconds (ns), but the High or Low time number can be followed by ps, micro,
ms, or % if the High or Low time is an actual time measurement.

Timing Ignore Paths XCF Syntax Examples
This form is not supported for CPLD devices.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=103

104 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

There are situations in which a path that exercises a certain net should be ignored because
all paths through the net, instance, or instance pin are not important from a timing
specification point of view.

TIMESPEC "TSidentifier"=FROM "source_group" TO "dest_group" TIG;

where

• identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _

• source_group and dest_group are user-defined or predefined groups

The following statement indicates that the timing specification TS_35 calls for a maximum
allowable delay of 50 ns between the groups here and there.

TIMESPEC "TS_35"=FROM "here" TO "there" 50;

The following statement indicates that the timing specification TS_70 calls for a 25 ns clock
period for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC "TS_70"=PERIOD "clock_a" 25 high 15;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=104

Timing Closure User Guide www.xilinx.com 105
UG612 (v 14.3) October 16, 2012

Timing Name

Timing Name
The Timing Name (TNM) constraint:

• Is a basic grouping constraint.

• Identifies the elements that make up a group for use in a timing specification.

• Tags specific predefined groups as members of a group to simplify the application of
timing specifications to the group.

• Supports the Rising and Falling keywords.

For more information, see Chapter 3, Timing Constraint Principles.

Timing Name XCF Syntax
{NET|INST|PIN} "net_or_pin_or_inst_name" TNM=[predefined_group] identifier;

where

• predefined_group can be all the members or a subset of a predefined group using the
keywords FFS, RAMS, LATCHES, PADS, CPUS, HSIOS, BRAMS_PORTA,
BRAMS_PORTB, DSPS, and MULTS

• identifier can be any combination of letters, numbers, or underscores.

Timing Name XCF Syntax Example
NET clk TNM = FFS (my_flop) Grp1;
INST clk TNM = FFS (my_macro) Grp2;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=105

106 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 4: Specifying Timing Constraints in XST

Timing Name Net
The Timing Name Net (TNM_NET) constraint identifies the elements that make up a
group for use in a timing specification.

Timing Name Net is essentially equivalent to Timing Name on a net except for input pad
nets.

For more information, see Chapter 3, Timing Constraint Principles.

Timing Name Net XCF Syntax
{NET|INST} "net_name" TNM_NET= [predefined_group] identifier;

where

• predefined_group can be all the members of a predefined group using the
keywords FFS, RAMS, PADS, MULTS, HSIOS, CPUS, DSPS, BRAMS_PORTA,
BRAMS_PORTB or LATCHES. A subset of elements in a predefined_group can be
defined as follows:

• predefined_group (name_qualifier1... name_qualifiern)

• -name_qualifiern can be any combination of letters, numbers, or underscores.
The name_qualifier type (net or instance) is based on the element type that
Timing Name Net is placed on. If the Timing Name Net is on a NET, the
name_qualifier is a net name. If the Timing Name Net is an instance (INST), the
name_qualifier is an instance name.

• identifier can be any combination of letters, numbers, or underscores

The identifier cannot be any the following reserved words: FFS, RAMS, LATCHES,
PADS, CPUS, HSIOS, MULTS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT.

XST supports Timing Name Net with the limitation that only a single pattern is supported
for predefined groups.

Timing Name Net XCF Syntax Example
NET clk TNM_NET = FFS (my_flop) Grp1;
INST clk TNM_NET = FFS (my_macro) Grp2;

Table 4-1: Timing Name Net Support Limitations

Supported NET "PADCLK" TNM_NET=FFS "GRP1"; #

Not supported NET "PADCLK" TNM_NET = FFS(machine/*:xcounter/*) TG1; #

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=106

Timing Closure User Guide www.xilinx.com 107
UG612 (v 14.3) October 16, 2012

Chapter 5

Specifying Timing Constraints in
Synplify

This chapter discusses the methods for specifying timing constraints in Synplify. For
information on the methods for specifying timing constraints in the Xilinx® Synthesis Tool
(XST), see Chapter 4, Specifying Timing Constraints in XST.

The sections below give syntax examples for individual Xilinx timing constraints in VHDL
and Verilog.

For more information, see:

• Synthesis and Simulation Design Guide (UG626), cited in Appendix A, Additional Resources

• Synopsys FPGA Synthesis Reference Manual

The methods for specifying timing constraints in Synplify are:

• Specifying Timing Constraints in HDL

• Specifying Timing Constraints in an .sdc File (Tcl)

• Specifying Timing Constraints in a SCOPE Spreadsheet

If there are multiple timing exception constraints on the same object, the synthesis tool uses
the guidelines described in “Conflict Resolution for Timing Exceptions” in the Synopsys
FPGA Synthesis Reference Manual, to determine which constraint takes precedence.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=107

108 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

Constraint Types
Table 5-1, Constraint Types for Each Timing Constraint Entry in Synplify, lists the timing
constraints and related commands in alphabetical order, according to the methods used to
enter them. The timing constraints for HDL are all directives.

* This constraint is available in Synplify Pro and Synplify Premier only.

Specifying Timing Constraints in HDL
Write source code attributes or directives in Hardware Description Language (HDL) code.

Enter black box timing directives in the source code. Do not include any other timing
constraints in the source code. The source code becomes less portable, and you must
recompile the design for the constraints to take effect.

You can also enter attributes using a SCOPE Spreadsheet. You must use source code for
directives.

Table 5-1: Constraint Types for Each Timing Constraint Entry in Synplify

HDL Tcl (.sdc File) SCOPE

black_box_tri_pins

define_clock Clocks Panel

define_clock_delay Clock to Clock Panel

define_compile_point Compile Points Panel

define_current_design

define_false_path False Paths Panel

define_input_delay Inputs/Outputs Panel

define_io_standard I/O Standard Panel

define_multicycle_path Multi-Cycle Paths Panel

define_output_delay Inputs/Outputs Panel

define_path_delay Max Delay Paths Panel

define_reg_input_delay Registers Panel

define_reg_output_delay Registers Panel

syn_force_seq_prim *

syn_gatedclk_clock_en *

syn_gatedclk_clock_en_polarity *

syn_isclock

syn_tpdn

syn_tcon

syn_tsun

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=108

Timing Closure User Guide www.xilinx.com 109
UG612 (v 14.3) October 16, 2012

Syntax Examples for HDL Timing Constraints

Syntax Examples for HDL Timing Constraints
The following sections give syntax examples for HDL timing constraints

• black_box_pad_pin

• black_box_tri_pins

• syn_force_seq_prim

• syn_gatedclk_clock_en

• syn_gatedclk_clock_en_polarity

• syn_isclock

• syn_tpdn

• syn_tcon

• syn_tsun

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=109

110 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

black_box_pad_pin
The black_box_pad_pin directive specifies pins on a user-defined black box component
as I/O pads visible to the environment outside the black box.

If more than one port is an I/O pad, list the ports:

• Inside double-quotes separated by commas

• Without enclosed spaces

black_box_pad_pin Verilog Syntax
object /* synthesis syn_black_box black_box_pad_pin = "portList" */ ;

where

• portList is a spaceless, comma-separated list of the names of the ports on black
boxes that are I/O pads.

black_box_pad_pin Verilog Syntax Example
module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="GIN[2:0],Q" */;

black_box_pad_pin VHDL Syntax
attribute black_box_pad_pin of object : objectType is "portList" ;

where

• object is an architecture or component declaration of a black box. Data type is
string.

• portList is a spaceless, comma-separated list of the black box port names that are I/
O pads.

black_box_pad_pin VHDL Syntax Example
library ieee;
use ieee.std_logic_1164.all;
package my_components is
component BBDLHS
port (D: in std_logic;
E: in std_logic;
GIN : in std_logic_vector(2 downto 0);
Q : out std_logic);
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;
attribute black_box_pad_pin : string;
attribute black_box_pad_pin of BBDLHS : component is "GIN(2:0),Q";
end package my_components;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=110

Timing Closure User Guide www.xilinx.com 111
UG612 (v 14.3) October 16, 2012

black_box_tri_pins

black_box_tri_pins
The black_box_tri_pins directive specifies that an output port on a component
defined as a black box is a tristate. The black_box_tri_pins directive eliminates
multiple driver errors when the output of a black box has more than one driver. A multiple
driver error is issued unless you use the black_box_tri_pins directive to specify that
the outputs are tristates.

If there is more than one port that is a tristate, list the ports:

• Inside double-quotes separated by commas

• Without enclosed spaces

black_box_tri_pins Verilog Syntax
object /* synthesis syn_black_box black_box_tri_pins = "portList" */ ;

where

• portList is a spaceless, comma-separated list of multiple pins.

black_box_tri_pins Verilog Syntax Example
Following is a black_box_tri_pins Verilog syntax example with a single port name.

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_tri_pins="PAD" */;
Here is an example with a list of multiple pins:
module bb1(D,E,tri1,tri2,tri3,Q)
/* synthesis syn_black_box black_box_tri_pins="tri1,tri2,tri3" */;
For a bus, specify the port name followed by all the bits on the bus:
module bb1(D,bus1,E,GIN,GOUT,Q)
/* synthesis syn_black_box black_box_tri_pins="bus1[7:0]" */;

black_box_tri_pins VHDL Syntax
attribute black_box_tri_pins of object : objectType is "portList" ;

where

• object is a component declaration or architecture. Data type is string.

• portList is a spaceless, comma-separated list of the tristate output port names

black_box_tri_pins VHDL Syntax Example
library ieee;
use ieee.std_logic_1164.all;
package my_components is
component BBDLHS
port (D: in std_logic;
E: in std_logic;
GIN : in std_logic;
GOUT : in std_logic;
PAD : inout std_logic;
Q: out std_logic);
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of BBDLHS : component is true;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=111

112 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

attribute black_box_tri_pins : string;
attribute black_box_tri_pins of BBDLHS : component is "PAD";
end package my_components;

Multiple pins on the same component can be specified as a list:

attribute black_box_tri_pins of bb1 : component is "tri,tri2,tri3";

To apply this directive to a port that is a bus, specify all bits on the bus:

attribute black_box_tri_pins of bb1 : component is "bus1[7:0]";

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=112

Timing Closure User Guide www.xilinx.com 113
UG612 (v 14.3) October 16, 2012

syn_force_seq_prim

syn_force_seq_prim
The syn_force_seq_prim directive indicates that gated clocks should be fixed for this
black box, and the fix gated clocks algorithm can be applied to the associated primitive.
The syn_force_seq_prim directive is available only in Synplify Pro and Synplify
Premier.

To use the syn_force_seq_prim directive with a black box, you must also identify the
clock signal with the syn_isclock directive and the enable signal with the
syn_gatedclk_clock_en directive. The data type is Boolean.

syn_force_seq_prim Verilog Syntax
object /* synthesis syn_force_seq_prim = 1 */ ;

where

• object is the module name of the black box

syn_force_seq_prim Verilog Syntax Example
module bbe (ena, clk, data_in, data_out)
/* synthesis syn_black_box */
/* synthesis syn_force_seq_prim=1 */ ;
input clk /* synthesis syn_isclock = 1 */
/* synthesis syn_gatedclk_clock_en="ena" */;
input data_in,ena;
output data_out;
endmodule

syn_force_seq_prim VHDL Syntax
attribute syn_force_seq_prim of object: objectType is true ;

where

• object is the entity name of the black box.

syn_force_seq_prim VHDL Syntax Example
library ieee;
use ieee.std_logic_1164.all;
entity bbram is
port (addr: IN std_logic_VECTOR(6 downto 0);
din: IN std_logic_VECTOR(7 downto 0);
dout: OUT std_logic_VECTOR(7 downto 0);
clk: IN std_logic;
en: IN std_logic;
we: IN std_logic);
attribute syn_black_box : boolean ;
attribute syn_black_box of bbram : entity is true ;
attribute syn_isclock : boolean;
attribute syn_isclock of clk: signal is true;
attribute syn_gatedclk_clock_en : string;
attribute syn_gatedclk_clock_en of clk : signal is "en";
end entity bbram;
architecture bb of bbram is
attribute syn_force_seq_prim : boolean;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=113

114 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

attribute syn_force_seq_prim of bb : architecture is true;
begin
end architecture bb;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=114

Timing Closure User Guide www.xilinx.com 115
UG612 (v 14.3) October 16, 2012

syn_gatedclk_clock_en

syn_gatedclk_clock_en
The syn_gatedclk_clock_en directive specifies the enable pin to be used in fixing the
gated clocks. To use the syn_gatedclk_clock_en directive with a black box, you must:

• Identify the clock signal with the syn_isclock directive, and

• Indicate that the fix gated clocks algorithm can be applied with the
syn_force_seq_prim directive.

The data type is string.

syn_gatedclk_clock_en Verilog Syntax
object /* synthesis syn_gatedclk_clock_en = "value" */ ;

where

• object is the module name

• value is the name of the enable pin

syn_gatedclk_clock_en Verilog Syntax Example
module bbe (ena, clk, data_in, data_out)
/* synthesis syn_black_box */
/* synthesis syn_force_seq_prim=1 */;
input clk
/* synthesis syn_isclock = 1 */
/* synthesis syn_gatedclk_clock_en="ena" */;
input data_in,ena;
output data_out;
endmodule

syn_gatedclk_clock_en VHDL Syntax
attribute syn_gatedclk_clock_en of object: objectType is value ;

where

• object is the entity name of the black box

syn_gatedclk_clock_en VHDL Syntax Example
architecture top of top is component bbram
port (myclk : in bit;
opcode : in bit_vector(2 downto 0);
a, b : in bit_vector(7 downto 0);
rambus : out bit_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_black_box of bbram: component is true;
attribute syn_force_seq_prim : boolean
attribute syn_force_seq_prim of bbram: component is true;
attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
attribute syn_gatedclk_clock_en : string;
attribute syn_gatedclk_clock_en of bbram: signal is "ena
//Other code

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=115

116 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

syn_gatedclk_clock_en_polarity
The syn_gatedclk_clock_en_polarity directive indicates the polarity of the clock
enable port on a black box. This allows the synthesis tool to apply the algorithm to fix
gated clocks. If you do not set any polarity with this attribute, the synthesis tool assumes a
positive polarity by default.

syn_gatedclk_clock_en_polarity Verilog Syntax
object /* synthesis syn_gatedclk_clock_en_polarity = 1 | 0 */ ;

where

• object is the module name of the black box.

The value can be 1 or 0. A value of 1 indicates positive polarity of the enable signal (active
high) and a value of 0 indicates negative polarity (active low). If the attribute is not
defined, the synthesis tool assumes a positive polarity by default.

syn_gatedclk_clock_en_polarity Verilog Syntax Example
module bbe1 (ena, clk, data_in, data_out)
/* synthesis syn_black_box */
/* synthesis syn_force_seq_prim=1 */;
input clk /* synthesis syn_isclock = 1 */
/* synthesis syn_gatedclk_clock_en="ena" */
/* synthesis syn_gatedclk_clock_en_polarity = 0 */;
input data_in,ena;
output data_out;
endmodule

syn_gatedclk_clock_en_polarity VHDL Syntax
attribute syn_gatedclk_clock_en_polarity of object: objectType is true
| false;

syn_gatedclk_clock_en_polarity VHDL Syntax Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
entity bbe1 is
port (ena : in std_logic;
clk : in std_logic;
data_in : in std_logic;
data_out : out std_logic);
attribute syn_black_box : boolean;
attribute syn_force_seq_prim : boolean;
attribute syn_gatedclk_clock_en_polarity : boolean;
attribute syn_gatedclk_clock_en_polarity of clk: signal is false;
attribute syn_gatedclk_clock_en : string;
attribute syn_isclock : boolean;
attribute syn_isclock of clk : signal is true;
attribute syn_gatedclk_clock_en of clk: signal is "ena";
attribute syn_force_seq_prim of clk: signal is true ;
end bbe1;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=116

Timing Closure User Guide www.xilinx.com 117
UG612 (v 14.3) October 16, 2012

syn_gatedclk_clock_en_polarity

architecture arch_bbe1 of bbe1 is
attribute syn_black_box : boolean;
attribute syn_black_box of arch_bbe1: architecture is true;
attribute syn_force_seq_prim of arch_bbe1: architecture is true;
begin
end arch_bbe1;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=117

118 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

syn_isclock
The syn_isclock directive specifies an input port on a black box as a clock. Use the
syn_isclock directive to specify that an input port on a black box is a clock, even though
its name does not correspond to a recognized name. Using the syn_isclock directive
connects it to a clock buffer if appropriate. The data type is Boolean.

syn_isclock Verilog Syntax
object /* synthesis syn_isclock = 1 */ ;

where

• object is an input port on a black box

syn_isclock Verilog Syntax Example
module ram4 (myclk,out,opcode,a,b) /* synthesis syn_black_box */;
output [7:0] out;
input myclk /* synthesis syn_isclock = 1 */;
input [2:0] opcode;
input [7:0] a, b;
//Other code

syn_isclock VHDL Syntax
attribute syn_isclock of object: objectType is true ;

where

• object is a black box input port

syn_isclock VHDL Syntax Example
library synplify;
entity ram4 is
port (myclk : in bit;
opcode : in bit_vector(2 downto 0);
a, b : in bit_vector(7 downto 0);
rambus : out bit_vector(7 downto 0));
attribute syn_isclock : boolean;
attribute syn_isclock of myclk: signal is true;
// Other code

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=118

Timing Closure User Guide www.xilinx.com 119
UG612 (v 14.3) October 16, 2012

syn_tpdn

syn_tpdn
The syn_tpdn directive supplies information on timing propagation for combinational
delay through a black box. The syn_tpdn directive can be entered as an attribute using the
Attribute panel of the SCOPE editor. The information in the object, attribute, and value
fields must be manually entered.

syn_tpdn Verilog Syntax
object /* syn_tpdn = "bundle -> bundle = value" */ ;

where

• bundle is a collection of buses and scalar signals

To assign values to bundles, use the following syntax. The values are in ns.

"bundle -> bundle = value"

The objects of a bundle must be separated by commas with no intervening spaces. A valid
bundle is A,B,C which lists three signals.

syn_tpdn Verilog Syntax Example
The following example defines syn_tpdn along with other black box timing constraints:

module ram32x4(z,d,addr,we,clk); /* synthesis syn_black_box
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

syn_tpdn VHDL Syntax
attribute syn_tpdn of object : objectType is "bundle -> bundle = value"
;

where

• bundle is a collection of buses and scalar signals.

To assign values to bundle, use the following syntax. The values are in ns.

"bundle -> bundle = value"

The objects of a bundle must be separated by commas with no spaces between. A valid
bundle is A,B,C which lists three signals.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=119

120 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

syn_tpdn VHDL Syntax Examples
In VHDL, there are ten predefined instances of each directive in the Synplify library. For
example:

syn_tpd1, syn_tpd2, syn_tpd3, … syn_tpd10

If you are entering the timing directives in the source code and you require more than ten
different timing delay values for any one of the directives, declare the additional directives
with an integer greater than ten.

attribute syn_tpd11 : string;
attribute syn_tpd11 of bitreg : component is "di0,di1 -> do0,do1 = 2.0";
attribute syn_tpd12 : string;
attribute syn_tpd12 of bitreg : component is "di2,di3 -> do2,do3 = 1.8";

The following example assigns syn_tpdn together with some of the black box constraints.

-- A USE clause for the Synplify Attributes package was included
-- earlier to make the timing constraint definitions visible here.
architecture top of top is
component rcf16x4z
port (ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
clk, wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2, do3 : out std_logic);
end component;
attribute syn_tpd1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";
attribute syn_tpd2 of rcf16x4z : component is "tri -> do0,do1,do2,do3 = 2.0";
attribute syn_tsu1 of rcf16x4z : component is "ad0,ad1,ad2,ad3 -> clk = 1.2";
attribute syn_tsu2 of rcf16x4z : component is "wren,wpe -> clk = 0.0";
// Other code

sdc File Syntax
define_attribute {v:blackboxModule} syn_tpdn { bundle -> bundle = value}

where

• v: indicates that the directive is attached to the view

• blackboxModule is the symbol name of the black-box

• n is a numerical suffix that lets you specify different input to output timing delays for
multiple signals/bundles

• bundle is a collection of buses and scalar signals. The objects of a bundle must be
separated by commas with no intervening spaces. A valid bundle is A, B, C, which
lists three signals.

• value is input to output delay value in ns

sdc File Syntax example

define_attribute {v:MEM} syn_tpd1 {MEM_RD->DATA_OUT[63:0]=20}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=120

Timing Closure User Guide www.xilinx.com 121
UG612 (v 14.3) October 16, 2012

syn_tcon

syn_tcon
The syn_tcon directive supplies the clock to output timing delay through a black box.
The syn_tcon directive can be entered as an attribute using the Attribute panel of the
SCOPE editor. The information in the object, attribute, and value fields must be manually
entered.

syn_tcon Verilog Syntax
object /* syn_tcon = "[!]clock -> bundle = value" */ ;

where

• bundle is a collection of buses and scalar signals. To assign values to bundles, use the
following syntax. The values are in ns.

"[!]clock -> bundle = value"

• ! is an optional exclamation mark indicating a negative edge for a clock. The objects
of a bundle must be separated by commas with no spaces between. A valid bundle is
A,B,C which lists three signals.

syn_tcon Verilog Syntax Example
Following is an example defining syn_tcon with other black box constraints.

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tco1="clk->z[3:0]=4.0"
syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0"
syn_tsu2="we->clk=3.0" */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

syn_tcon VHDL Syntax
attribute syn_tcon of object : objectType is "[!]clock -> bundle =
value" ;

where

• bundle is a collection of buses and scalar signals. To assign values to bundle, use the
following syntax. The values are in ns.

"[!]clock -> bundle = value"

• ! is an optional exclamation mark indicating a negative edge for a clock. The objects
of a bundle must be separated by commas with no spaces between. A valid bundle is
A,B,C which lists three signals.

In VHDL, there are ten predefined instances of each directives in the Synplify library. For
example:

syn_tco1, syn_tco2, syn_tco3, … syn_tco10

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=121

122 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

If you are entering the timing directives in the source code and you require more than ten
different timing delay values for any one of the directives, declare the additional directives
with an integer greater than 10.

syn_tcon VHDL Syntax Examples
attribute syn_tco11 : string;
attribute syn_tco11 of bitreg : component is "clk -> do0,do1 = 2.0";
attribute syn_tco12 : string;
attribute syn_tco12 of bitreg : component is "clk -> do2,do3 = 1.8";

The following example assigns syn_tcon along with other black box constraints.

-- A USE clause for the Synplify Attributes package
-- was included earlier to make the timing constraint
-- definitions visible here.
architecture top of top is
component Dpram10240x8
port (
-- Port A
ClkA, EnA, WeA: in std_logic;
AddrA : in std_logic_vector(13 downto 0);
DinA : in std_logic_vector(7 downto 0);
DoutA : out std_logic_vector(7 downto 0);
-- Port B
ClkB, EnB: in std_logic;
AddrB : in std_logic_vector(13 downto 0);
DoutB : out std_logic_vector(7 downto 0));
end component;
attribute syn_black_box : boolean;
attribute syn_tsu1 : string;
attribute syn_tsu2 : string;
attribute syn_tco1 : string;
attribute syn_tco2 : string;
attribute syn_isclock : boolean;
attribute syn_black_box of Dpram10240x8 : component is true;
attribute syn_tsu1 of Dpram10240x8 : component is
"EnA,WeA,AddrA,DinA -> ClkA = 3.0";
attribute syn_tco1 of Dpram10240x8 : component is "ClkA -> DoutA[7:0] = 6.0";
attribute syn_tsu2 of Dpram10240x8 : component is "EnB,AddrB -> ClkB = 3.0";
attribute syn_tco2 of Dpram10240x8 : component is "ClkB -> DoutB[7:0] = 13.0";
// Other code

syn_tcon sdc File Syntax
define_attribute {v:blackboxModule} syn_tcon { [!]clock -> bundle =
value}

where

• v: indicates that the directive is attached to the view

• blackboxModule is the symbol name of the black box

• n is a numerical suffix that lets you specify different clock to output timing delays for
multiple signals/bundles

• ! is an optional exclamation mark indicating that the clock is active on its falling
(negative) edge

• clock is the name of the clock signal

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=122

Timing Closure User Guide www.xilinx.com 123
UG612 (v 14.3) October 16, 2012

syn_tcon

• bundle is a collection of buses and scalar signals.

The objects of a bundle must be separated by commas with no intervening spaces. A
valid bundle is A, B, C, which lists three signals.

• value is the clock to output delay value in ns

syn_tcon sdc File Syntax Example
define_attribute {v:RCV_CORE} syn_tco1 {CLK-> R_DATA_OUT[63:0]=20}
define_attribute {v:RCV_CORE) syn_tco2 {CLK-> DATA_VALID=30<n>

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=123

124 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

syn_tsun
The syn_tsun directive:

• Supplies information on timing setup delay required for input pins (relative to the
clock) in a black box.

• Can be entered as an attribute using the Attribute panel of the SCOPE editor.

The information in the object, attribute, and value fields must be manually entered.

syn_tsun Verilog Syntax
object /* syn_tsun = "bundle -> [!]clock = value" */ ;

where

• bundle is a collection of buses and scalar signals

To assign values to bundles, use the following syntax. The values are in ns.

"bundle -> [!]clock = value"

• ! is an optional exclamation mark indicating a negative edge for a clock.

The objects of a bundle must be separated by commas with no spaces between. A valid
bundle is A,B,C which lists three signals.

syn_tsun Verilog Syntax Example
The following example defines syn_tsun together with other black box constraints:

module ram32x4(z,d,addr,we,clk);
/* synthesis syn_black_box syn_tpd1="addr[3:0]->z[3:0]=8.0"
syn_tsu1="addr[3:0]->clk=2.0" syn_tsu2="we->clk=3.0" */
output [3:0] z;
input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

syn_tsun VHDL Syntax
attribute syn_tsun of object : objectType is "bundle -> [!]clock = value" ;

In VHDL, there are ten predefined instances of each directive in the Synplify library. For
example:

syn_tsu1, syn_tsu2, syn_tsu3, … syn_tsu10

If you are entering the timing directives in the source code and you require more than ten
different timing delay values for any one of the directives, declare the additional directives
with an integer greater than 10.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=124

Timing Closure User Guide www.xilinx.com 125
UG612 (v 14.3) October 16, 2012

syn_tsun

syn_tsun VHDL Syntax Examples
attribute syn_tsu11 : string;
attribute syn_tsu11 of bitreg : component is "di0,di1 -> clk = 2.0";
attribute syn_tsu12 : string;
attribute syn_tsu12 of bitreg : component is "di2,di3 -> clk = 1.8";

where

• bundle is a collection of buses and scalar signals.

To assign values to bundles, use the following syntax. The values are in ns.

"bundle -> [!]clock = value"

• ! is an optional exclamation mark indicating a negative edge for a clock.

The objects of a bundle must be separated by commas with no spaces between. A valid
bundle is A,B,C which lists three signals

In addition to the syntax used in the code above, you can also use the following
Verilog-style syntax to specify this attribute:

attribute syn_tsu1 of inputfifo_coregen : component is "rd_clk->dout[48:0]=3.0";

The following example assigns syn_tsun together with other black box constraints:

-- A USE clause for the Synplify Attributes package
-- was included earlier to make the timing constraint
-- definitions visible here.
architecture top of top is
component rcf16x4z
port (ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
clk, wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2, do3 : out std_logic);
end component;
attribute syn_tco1 of rcf16x4z : component is
"ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1";
attribute syn_tpd2 of rcf16x4z : component is "tri -> do0,do1,do2,do3 = 2.0";
attribute syn_tsu1 of rcf16x4z : component is "ad0,ad1,ad2,ad3 -> clk = 1.2";
attribute syn_tsu2 of rcf16x4z : component is "wren,wpe -> clk = 0.0";
// Other code

syn_tsun sdc File Syntax
define_attribute {v:blackboxModule} syn_tsun { bundle -> [!]clock =
value}

where

• v: indicates that the directive is attached to the view

• blackboxModule is the symbol name of the black box

• nA is a numerical suffix that lets you specify different clock to output timing delays
for multiple signals/bundles

• ! is an optional exclamation mark indicating that the clock is active on its falling
(negative) edge

• clock is the name of the clock signal

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=125

126 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

• bundle is a collection of buses and scalar signals.

The objects of a bundle must be separated by commas with no intervening spaces.
A valid bundle is A,B,C, which lists three signals.

• valueInput is the clock setup delay value in ns

syn_tsun sdc File Syntax Example
define_attribute {v:RTRV_MOD} syn_tsu4 {RTRV_DATA[63:0]->!CLK=20}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=126

Timing Closure User Guide www.xilinx.com 127
UG612 (v 14.3) October 16, 2012

Specifying Timing Constraints in an .sdc File (Tcl)

Specifying Timing Constraints in an .sdc File (Tcl)
Write Tcl commands in an .sdc (Tcl) file.

Constraint files have an .sdc file extension. They can include timing constraints, general
attributes, and vendor-specific attributes.

Create the .sdc file manually in a text editor. Use a SCOPE Spreadsheet to generate the
constraint syntax.

The following sections lists each type of Tcl timing constraints in detail.

• define_clock

• define_clock_delay

• define_compile_point

• define_current_design

• define_false_path

• define_input_delay

• define_io_standard

• define_multicycle_path

• define_output_delay

• define_path_delay

• define_reg_input_delay

• define_reg_output_delay

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=127

128 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

define_clock
The define_clock constraint defines a clock with a specific duty cycle and frequency or
clock period goal. You can have multiple clocks with different clock frequencies.

Use the set_option -frequency Tcl command in the project file to set the default
frequency for all clocks. If you do not specify a global frequency, the timing analyzer uses
a default.

Use the define_clock timing constraint to:

• Override the default, and

• Specify unique clock frequency goals for specific clock signals.

You can also use define_clock to set the clock frequency for a clock signal output of
clock divider logic. The clock name is the output signal name for the register instance.

define_clock Syntax
define_clock [-disable] [-virtual] {clockObject} [-freq MHz | -period ns] [-clockgroup
domain] [-rise value -fall value] [-route ns] [-name clockName] [-comment textString]

where

• disable disables a previous clock constraint

• virtual specifies arrival and required times on top level ports that are enabled by
clocks external to the chip (or block) that you are synthesizing.

When specifying -name for the virtual clock, the field can contain a unique name not
associated with any port or instance in the design.

• clockObject is a required parameter that specifies the clock object name

Clocks can be defined on the following:

• Top-level input ports (p:)

• Nets (n:)

• Hierarchical ports (t:)

• Instances (i:)

For Xilinx technologies, specify the define_clock constraint on an instance.

• Output pins of instantiated cells (t:)

• Internal pins of instantiated cells (t:)

Clocks defined on any of the following WILL NOT be honored:

• Top-level output ports

• Input pins of instantiated gates

• Pins of inferred instances

• name specifies a name for the clock if you want to use a name other than the clock
object name. This alias name also appears in the Timing Reports.

• freq defines the frequency of the clock in MHz. You can specify either freq or
period, but not both.

• period specifies the period of the clock in ns. Specify either period or freq, but not
both.

• clockgroup allows you to specify clock relationships

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=128

Timing Closure User Guide www.xilinx.com 129
UG612 (v 14.3) October 16, 2012

define_clock

You assign related (synchronized) clocks to the same clock group and unrelated clocks
in different groups. The synthesis tool calculates the relationship between clocks in the
same clock group, and analyzes all paths between them. Paths between clocks in
different groups are ignored (false paths).

• rise/fall specifies a non-default duty cycle

By default, the synthesis tool assumes that the clock is a 50% duty cycle clock, with the
rising edge at 0 and the falling edge at period/2. If you have another duty clock cycle,
specify the appropriate Rise At and Fall At values.

• route is an advanced user option that improves the path delays of all registers
controlled by this clock

The value of route is the difference between the synthesis Timing Report path delays
and the value in the Place and Route Timing Report.

The route constraint applies globally to the clock domain, and can over-constrain
registers where constraints are not needed.

Before you use this option, evaluate the path delays on individual registers in the
optimization Timing Report and try to improve the delays by applying the constraints
define_reg_input_delay and define_reg_output_delay only on the
registers that need them.

define_clock Syntax Examples
In the following example, a clock is defined on the Q pins of instances myInst1 and
myInst2.

define_clock {CLK1} -period 10.0 -clockgroup default_clkgroup
define_clock {CLK3} -period 5.0 -clockgroup default_clkgroup
-uncertainty 0.2 -name INT_REF3
define_clock -virtual {CLK2} -period 20.0 -clockgroup g2
define_clock {CLK4} -period 20.000 -clockgroup g3 -rise 1.000 -fall
11.000 -ref_rise 0.000 -ref_fall 10.000
define_clock Pin-Level Constraint Examples
define_clock {i:myInst1.Q} -period 10.000 -clockgroup default -rise
0.200 -fall 5.200 -name myff1
define_clock {i:myInst2.Q} -period 12.000 -clockgroup default -rise
0.400 -fall 5.400 -name myff2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=129

130 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

define_clock_delay
The define_clock_delay command defines the delay between the clocks. By default,
the synthesis tool calculates clock delay based on the clock parameters you define with the
define_clock command. However, if you use define_clock_delay, the specified
delay value overrides any calculations made by the synthesis tool. The results shown in the
Clock Relationships section of the Timing Report are based on calculations made using this
constraint.

define_clock_delay Syntax
define_clock_delay [-rise|fall] {clockName1} [-rise|fall] {clockName2} delayValue

where

• rise|fall specifies the clock edge

• clockName specifies the clocks to constrain

The clock must be already defined with define_clock.

• delayValue specifies the delay, in nanoseconds, between the two clocks

You can also specify a value false which defines the path as a false path.

define_ clock_delay Syntax Example
Define_clock_delay -rise {clk0} -rise {clk2x} 2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=130

Timing Closure User Guide www.xilinx.com 131
UG612 (v 14.3) October 16, 2012

define_compile_point

define_compile_point
The define_compile_point command:

• Is available for Synplify Pro and Synplify Premier only.

• Defines a compile point in a top-level constraint file.

Use one define_compile_point command for each compile point you define.

define_compile_point Syntax
define_compile_point [-disable] { regionName | moduleName } -type { locked }
[-cpfile { }] [-comment textString]

where

• disable disables a previous compile point definition

• type specifies the type of compile point. This must be locked.

• cpfile is for Synplicity internal use only

define_compile_point Syntax Example
define_compile_point {v:work.prgm_cntr} -type {locked}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=131

132 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

define_current_design
The define_current_design command:

• Is available for Synplify Pro and Synplify Premier only.

• Specifies the compile-point region or module to which the constraints that follow it
apply

• Must be the first command in a compile-point constraint file.

define_current_design Syntax
define_current_design {regionName | libraryName.moduleName }

define_current_design Syntax Example
define_current_design {lib1.prgm_cntr}

Objects in all constraints that follow this command relate to prgm_cntr.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=132

Timing Closure User Guide www.xilinx.com 133
UG612 (v 14.3) October 16, 2012

define_false_path

define_false_path
The define_false_path constraint defines paths to ignore (remove) during timing
analysis and give lower (or no) priority during optimization. The false paths are also
passed on to supported place and route tools.

define_false_path Syntax
define_false_path {-from startPoint | -to endPoint | -through throughPoint}
[-comment textString]

where

• from specifies the starting point for the false path

The From point defines a timing start point. It can be any of the following:

• Clocks (c:)

• Registers (i:)

• Top-level input or bi-directional ports (p:)

• Black box outputs (i:)

For more information, see the Synopsys FPGA Synthesis Reference Manual.

• to specifies the ending point for the false path

The to point defines a timing end point. It can be any of the following:

• Clocks (c:)

• Registers (i:)

• Top-level output or bi-directional ports (p:)

• Black box inputs (i:)

• through specifies the intermediate points for the timing exception

Intermediate points can be any of the following:

• Combinational nets (n:)

• Hierarchical ports (t:)

• Pins on instantiated cells (t:)

By default, the through points are treated as an OR list. The constraint is applied if the
path crosses any points in the list.

To keep the signal name intact through synthesis, set the syn_keep directive (Verilog
or VHDL) on the signal.

define_false_path Syntax Example
The following example shows the syntax for setting define_false_path between
registers:

define_false_path -from {i:myInst1_reg} -through {n:myInst2_net}
-to {i:myInst3_reg}

The constraint is defined from the output pin of myInst1_reg, through net
myInst2_net, to the input of myInst3_reg. If an instance is instantiated, a pin-level
constraint applies on the pin, as defined. However, if an instance is inferred, the pin-level
constraint is transferred to the instance.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=133

134 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

For through points specified on pins, the constraint is transferred to the connecting net.
You cannot define a through point on a pin of an instance that has multiple outputs.
When specifying a pin on a vector of instances, you cannot refer to more than one bit of
that vector.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=134

Timing Closure User Guide www.xilinx.com 135
UG612 (v 14.3) October 16, 2012

define_input_delay

 define_input_delay
The define_input_delay constraint:

• Specifies the external input delays on top-level ports in the design. It is the delay
outside the chip before the signal arrives at the input pin.

• Models the interface of the inputs of the FPGA device with the outside environment.
The synthesis tool cannot detect the input delay unless you specify it in a timing
constraint.

define_input_delay Syntax
define_input_delay [-disable] { inputportName } | -default ns [-route
ns]
[-ref clockName:edge] [-comment textString]

where

• disable disables a previous delay specification on the named port

• inputportName is the name of the input port

• default sets a default input delay for all inputs.

Use this option to set an input delay for all inputs. You can set define_input_delay
on individual inputs to override the default constraint.

This example sets a default input delay of 3.0 ns:

define_input_delay -default 3.0

This example overrides the default and sets the delay on input_a to 10.0 ns:

define_input_delay {input_a} 10.0

• ref (recommended) is the clock name and edge that triggers the event

The value must include either the rising edge or falling edge.

• r

rising edge

• f

falling edge

For example:

define_input_delay {portb[7:0]} 10.00 -ref clock2:f

• route is an advanced option that includes route delay when the synthesis tool tries to
meet the clock frequency goal

Use the -route option on an input port when the place and route Timing Report
shows that the timing goal is not met because of long paths through the input port.

define_input_delay Syntax Examples
define_input_delay {porta[7:0]} 7.8 -ref clk1:r
define_input_delay -default 8.0
define_input_delay -disable {resetn}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=135

136 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

define_io_standard
The define_io_standard constraint specifies a standard I/O pad type to use for
specific Actel, Altera, and Xilinx device families.

define_io_standard Syntax
define_io_standard [-disable|-enable] {objectName} -delay_type
input_delay|output_delay columnTclName{value}
[columnTclName{value}...]

where

• delay_type is either input_delay or output_delay

define_io_standard Syntax Example
define_io_standard {DATA1[7:0]} -delay_type input_delay
syn_pad_type{LVCMOS_33} syn_io_slew{high} syn_io_drive{12}
syn_io_termination{pulldown}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=136

Timing Closure User Guide www.xilinx.com 137
UG612 (v 14.3) October 16, 2012

define_multicycle_path

define_multicycle_path
The define_multicycle_path constraint:

• Specifies a path that is a timing exception because it uses multiple clock cycles

• Provides extra clock cycles to the designated paths for timing analysis and
optimization

define_multicycle_path Syntax
define_multicycle_path [-start | -end] { -from startPoint | -to endPoint |
-through throughPoint }clockCycles [-comment textString]

where

• start| end specifies the clock cycles to use for paths with different start and end
clocks.

This option determines the clock period to use as the multiplicand in the calculation
for clock distance. If you do not specify a start or end option, the end clock is the
default.

• from specifies the start point for the Multi-Cycle timing exception

The from point defines a timing start point. It can be any of the following:

• Clocks (c:)

• Registers (i:)

• Top-level input or bi-directional ports (p:)

• Black box outputs (i:)

• to specifies the end point for the Multi-Cycle timing exception

The to point defines a timing start point. It can be any of the following:

• Clocks (c:)

• Registers (i:)

• Top-level input or bi-directional ports (p:)

• Black box outputs (i:)

• through specifies the intermediate points for the timing exception

Intermediate points can be:

• Combinational nets (n:)

• Hierarchical ports (t:)

• Pins on instantiated cells (t:)

By default, the intermediate points are treated as an OR list. The exception is applied if
the path crosses any points in the list.

For more information, see Specify From/To/Through Points in Chapter 5, Specify
From/To/Through Points.

Combine this option with -to or -from to get a specific path. To keep the signal name
intact throughout synthesis when you use this option, set the syn_keep directive
(Verilog or VHDL) on the signal.

• clockCycles is the number of clock cycles to use for the path constraint

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=137

138 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

Timing exception constraints must contain object types in the specification. Timing
exceptions, such as Multi-Cycle path and false path constraints, require that you explicitly
specify the object type (n: or i:) in the instance name parameter. For example:

define_multicycle_path -from {i:inst2.lowreg_output[7]} -to {i:inst1.DATA0[7]} 2

If you use SCOPE to specify timing exceptions, it attaches object type qualifiers to the
object names.

For more information, see the Synopsys FPGA Synthesis Reference Manual.

define_multicycle_path Syntax Examples
define_multicycle_path -from{i:regs.addr[4:0]} -to{i:special_regs.w[7:0]} 2
define_multicycle_path -to {i:special_regs.inst[11:0]} 2
define_multicycle_path -from {p:porta[7:0]} -through {n:prgmcntr.pc_sel44[0]} -to
{p:portc[7:0]} 2
define_multicycle_path -from {i:special_regs.trisc[7:0]} -through {t:uc_alu.aluz.Q}
-through {t:special_net.Q} 2

The following example shows the syntax for setting a Multi-Cycle path constraint between
registers:

define_multicycle_path -from {i:myInst1_reg} -through {n:myInst2_net} -to {i:myInst3_reg} 2

The constraint is defined from the output of myInst1_reg, through net myInst2_net, to
the input pin myInst3_reg. If the instance is instantiated, a pin-level constraint applies
on the pin, as defined. However, if the instance is inferred, the pin-level constraint is
transferred to the instance.

For through points specified on pins, the constraint is transferred to the connecting net.
You cannot define a through point on a pin of an instance that has multiple outputs.
When specifying a pin on a vector of instances, you cannot refer to more than one bit of
that vector.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=138

Timing Closure User Guide www.xilinx.com 139
UG612 (v 14.3) October 16, 2012

define_output_delay

define_output_delay
The define_output_delay constraint:

• Specifies the delay of the logic outside the FPGA device driven by the top-level
outputs.

• Models the interface of the outputs of the FPGA device with the outside environment.

The default delay outside the FPGA device is 0.0 ns. Output signals typically drive logic
outside the FPGA device. The synthesis tool cannot detect the delay for that logic unless
you specify it with a timing constraint.

define_output_delay Syntax
define_output_delay [-disable] { outputportName } |-default ns [-route ns]
[-ref clockName:edge] [-comment textString]

where

• disable disables a previous delay specification on the named port

• outputportName is the name of the output port

• default sets a default input delay for all outputs

Use this option to set a delay for all outputs. Setting define_output_delay on
individual outputs overrides the default constraint. This example sets a default output
delay of 8.0 ns. The delay is outside the FPGA device.

define_output_delay Syntax Examples
define_output_delay -default 8.0

The following example overrides the default and sets the output delay on output_a to
10.0 ns. Accordingly, output_a drives 10 ns of combinational logic before the relevant
clock edge.

define_output_delay {output_a} 10.0

where

• ref defines the clock name and edge that controls the event

The value must be one of the following:

• r

rising edge

• f

falling edge

For example:

define_output_delay {portb[7:0]} 10.00 -ref clock2:f.

• route is an advanced option that includes route delay when the synthesis tool tries to
meet the clock frequency goal

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=139

140 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

Output Pad Clock Domain Default
By default, define_output_delay constraints with no reference clock are constrained
against the global frequency, instead of the start clock for the path to the port. The synthesis
tool assumes the register and pad are not in the same clock domain. This change affects the
Timing Report and timing driven optimizations on any logic between the register and the
pad.

You must specify the clock domain for all output pads on which you have set output delay
constraints. For the pads for which you do not specify a clock, add the -ref option to the
define_output_delay constraint.

define_output_delay {LDCOMP} 0.50 -improve 0.00 -route 0.25 -ref {CLK1:r}

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=140

Timing Closure User Guide www.xilinx.com 141
UG612 (v 14.3) October 16, 2012

define_path_delay

define_path_delay
The define_path_delay constraint specifies point-to-point delay in nanoseconds (ns)
for maximum and minimum delay constraints. To specify the start, end, or through points,
use:

• The following options:

• -from

• -to

• -through

OR

• Any combination of these options

If you specify both define_path_delay -max and define_multicycle_path for
the same path, the synthesis tool uses the more restrictive of the two constraints.

When you specify define_path_delay and you also define input or output delays, the
synthesis tool adds the input or output delays to the path delay. The timing constraint that
is forward-annotated includes the I/O delay with the path delay. This could result in
discrepancies with the Xilinx place and route tool, which ignores the I/O delays and
reports the path delay only.

define_path_delay Syntax
define_path_delay [-disable] {-from {startPoint} | -to {endPoint} | -through {throughPoint}
-max delayValue [-comment textString]

where

• disable disables the constraint

• from specifies the starting point of the path.

The from point defines a timing start point. It can be any of the following:

• Clocks (c:)

• Registers (i:)

• Top-level input or bi-directional ports (p:)

• Black box outputs (i:)

• to specifies the ending point of the path.

The to point must be a timing end point. It can be any of the following:

• clocks (c:)

• registers (i:)

• top-level output or bi-directional ports (p:)

• black box inputs (i:)

Combine this option with -from or -through to get a specific path.

• through specifies the intermediate points for the timing exception.

Intermediate points can be:

• combinational nets (n:)

• hierarchical ports (t:)

• pins on instantiated cells (t:)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=141

142 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

By default, the intermediate points are treated as an OR list. The exception is applied if
the path crosses any points in the list. Combine this option with -to or -from to get a
specific path. To keep the signal name intact throughout synthesis when you use this
option, set the syn_keep directive (Verilog or VHDL) on the signal.

• max sets the maximum allowable delay for the specified path

This is an absolute value in nanoseconds (ns) and is shown as max analysis in the
Timing Report.

define_path_delay Syntax Examples
define_path_delay -from {i:dmux.alu [5]} -to {i:regs.mem_regfile_15[0]} -max 0.800

The following example sets a max delay of 2 ns on all paths to the falling edge of the
flip-flops clocked by clk1.

define_path_delay -to {c:clk1:f} -max 2

The following example sets the path delay constraint on the pins between registers:

define_path_delay -from {i:myInst1_reg} -through {t:myInst2_net.Y}
-to {i:myInst3_reg} -max 0.123

The constraint is defined from the output pin of myInst1, through pin Y of net myInst2,
to the input pin of myInst3. If the instance is instantiated, a pin-level constraint applies on
the pin, as defined. If the instance is inferred, the pin level constraint is transferred to the
instance.

For through points specified on pins, the constraint is transferred to the connecting net.
You cannot define a through point on a pin of an instance that has multiple outputs.

When specifying a pin on a vector of instances, you cannot refer to more than one bit of
that vector.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=142

Timing Closure User Guide www.xilinx.com 143
UG612 (v 14.3) October 16, 2012

define_reg_input_delay

define_reg_input_delay
The define_reg_input_delay constraint speeds up paths feeding a register by a given
number of nanoseconds. The synthesis tool attempts to meet the global clock frequency
goals for a design as well as the individual clock frequency goals (set with
define_clock). Use this constraint to speed up the paths feeding a register.

define_reg_input_delay Syntax
define_reg_input_delay { registerName } [-route ns] [-comment textString]

where

• registerName is:

• a single bit

• an entire bus, or

• a slice of a bus

• route is an advanced user option to tighten constraints during resynthesis

Use route when the place and route Timing Report shows the timing goal is not met
because of long paths to the register.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=143

144 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

define_reg_output_delay
The define_reg_output_delay constraint speeds up paths coming from a register by
a given number of nanoseconds. The synthesis tool attempts to meet the global clock
frequency goals for a design as well as the individual clock frequency goals (set with
define_clock). Use this constraint to speed up the paths coming from a register.

define_reg_output_delay Syntax
define_reg_output_delay { registerName } [-route ns] [-comment textString]

where

• registerName is:

• A single bit

• An entire bus, or

• A slice of a bus

• route is an advanced user option to tighten constraints during resynthesis

Use route when the place and route Timing Report shows the timing goal is not met
because of long paths to the register.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=144

Timing Closure User Guide www.xilinx.com 145
UG612 (v 14.3) October 16, 2012

Specify From/To/Through Points

Specify From/To/Through Points
This section discusses:

• From/To Points

• Through Points

• Clocks as From/To Points

From/To Points
From specifies the starting point for the timing exception. To specifies the ending point for
the timing exception. See the following table.

You can specify multiple from points in a single exception. This is most common when
specifying exceptions that apply to all bits of a bus. For example, you can specify
constraints From A[0:15] to B. In this case, there is an exception, starting at any of the
bits of A and ending on B.

Similarly, you can:

• Specify multiple to points in a single exception, and

• Specify both multiple starting points and multiple ending points such as From
A[0:15] to B[0:15].

 Through Points
Although through points are limited to nets, there are many ways to specify these
constraints:

• Single Through Point

• Single List of Through Points

• Multiple Through Points

• Multiple Lists of Through Points

You can also define these constraints in:

• The appropriate SCOPE panels, or

• The Sum of Products interface

When a port and a net have the same name, preface the name of the through point with:

• n:

nets

Table 5-2: Objects That Can Serve as Starting and Ending Points

From Points To Point

Clocks Clocks

Registers Registers

Top-level input or bi-directional ports Top-level output or bi-directional ports

Instantiated library primitive cells (gate cells)

Black box outputs Black box inputs

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=145

146 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

• t:

hierarchical ports

• p:

top-level ports

For example:

n:regs_mem[2] or t:dmux.bdpol

The n: prefix must be specified to identify nets. Otherwise, the associated timing
constraint is not be applied for valid nets.

Single Through Point

You can specify a single through point.

define_false_path -through regs_mem[2]

In this example, the constraint is applied to any path that passes through:

• regs_mem[2]:

Single List of Through Points

If you specify a single list of through points, the -through option:

• Behaves as an OR function

• Applies to any path that passes through any of the points in the list.

define_path_delay -through {regs_mem[2], prgcntr.pc[7], dmux.alub[0]}
-max 5 -min 1

In this example , the constraint is applied to any path through:

• regs_mem[2]

OR

• prgcntr.pc[7]

OR

• dmux.alub[0]

Multiple Through Points

To specify multiple points for the same constraint, precede each point with the -through
option.

define_path_delay -through regs_mem[2] -through prgcntr.pc[7] -through dmux.alub[0] -max 5
-min 1

In this example, the constraint operates as an AND function and applies to paths through:

• regs_mem[2]

AND

• prgcntr.pc[7]

AND

• dmux.alub[0]

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=146

Timing Closure User Guide www.xilinx.com 147
UG612 (v 14.3) October 16, 2012

Specify From/To/Through Points

Multiple Lists of Through Points

If you specify multiple -through lists, the constraint:

• Behaves as an AND/OR function

• Is applied to the paths through all points in the lists

Multiple Lists of Through Points Example One

define_false_path -through {A1 A2...An} -through {B1 B2 B3}

In this example the constraint applies to all paths that pass through:

• {A1 or A2 or...An}

AND

• {B1 or B2 or B3}

Multiple Lists of Through Points Example Two

define_multicycle_path -through {net1, net2} -through {net3, net4} 2

In this example, all paths that pass through the following nets are constrained at 2 clock
cycles:

net1 AND net3
OR net1 AND net4
OR net2 AND net3
OR net2 AND net4

 Clocks as From/To Points
You can specify clocks as from-to points in your timing exception constraints.

Clocks as From/To Points Syntax

define_timing_exception -from | -to { c:clock_name [: edge] }

where

• timing_exception is one of the following constraint types:

• multicycle_path

• false_path

• path_delay

• c:clock_name:edge is the name of the clock and clock edge (r or f)

If you do not specify a clock edge, both edges are used by default.

Multi-Cycle Path Clock Points

When you specify a clock as a from or to point, the Multi-Cycle path constraint applies to
all registers clocked by the specified clock.

The following example allows two clock periods for all paths from the rising edge of the
flip-flops clocked by clk1:

define_multicycle_path -from {c:clk1:r} 2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=147

148 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

You cannot specify a clock as a through point. However, you can set a constraint from or
to a clock and through an object:

• net

• pin

• hierarchical port

The following example allows two clock periods for all paths to the falling edge of the
flip-flops clocked by clk1 and through bit 9 of the hierarchical net:

define_multicycle_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]} 2

False Path Clock Points

When you specify a clock as a from or to point, the false path constraint is set on all
registers clocked by the specified clock. The timing analyzer ignores all false paths.

The following example disables all paths from the rising edge of the flip-flops clocked by
clk1:

define_false_path -from {c:clk1:r}

You cannot specify a clock as a through point. However, you can set a constraint from or
to a clock and through an object:

• net

• pin

• hierarchical port

The following example disables all paths to the falling edge of the flip flops clocked by
clk1 and through bit 9 of the hierarchical net.

define_false_path -to {c:clk1:f} -through (n:MYINST.mybus2[9]}

Path Delay Clock Points

When you specify a clock as a from or to point for the path delay constraint, the constraint
is set on all paths of the registers clocked by the specified clock.

The following example sets a max delay of 2 ns on all paths to the falling edge of the
flip-flops clocked by clk1:

define_path_delay -to {c:clk1:f} -max 2

You cannot specify a clock as a through point. However, you can set a constraint from or
to a clock and through an object:

• net

• pin

• hierarchical port

The following example sets a max delay of 0.2 ns on all paths from the rising edge of the
flip-flops clocked by clk1 and through bit 9 of the hierarchical net:

define_path_delay -from {c:clk1:r} -through (n:MYINST.mybus2[9]} -max .2

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=148

Timing Closure User Guide www.xilinx.com 149
UG612 (v 14.3) October 16, 2012

Specifying Timing Constraints in a SCOPE Spreadsheet

Specifying Timing Constraints in a SCOPE Spreadsheet
The Synthesis Constraints Optimization Environment® (SCOPE) is a spreadsheet-like
interface for entering and managing timing constraints and synthesis attributes.

The SCOPE spreadsheet can generate constraint files in Tcl format. Use this method for
specifying constraints wherever possible. You can use it for most constraints, except for
source code directives.

To create and open a new SCOPE dialog box:

• Choose File > New > Constraint file (SCOPE) from the Project view,

OR

• Click the SCOPE icon on the toolbar

For each TCL timing constraint type, there is an equivalent SCOPE spreadsheet interface.

For more information, see the Synplify User's Guide (SCOPE and Timing Constraints >
Scope Constraints).

Forward Annotation
The synthesis tool generates vendor-specific constraint files that can be forwarded and
annotated with the place and route tools. The constraint files are generated by default. To
disable this feature, deselect the following option:

Project > Implementation Option > Implementation Results > Write Vendor
Constraint File

The constraint file generated for Xilinx place and route tools has an ncf file extension
(.ncf).

The timing constraints described in the TCL and SCOPE sections are forward-annotated to
Xilinx in this file. In addition to these constraints, the synthesis tool forward-annotates
relationships between different clocks.

For more information, see:

• I/O Timing Constraints

• Clock Groups

• Relaxing Forward-Annotated I/O Constraints

• Digital Clock Manager/Delay Locked Loop

I/O Timing Constraints
By default, the synthesis tool forward-annotates the define_input_delay and
define_output_delay timing constraints to the Xilinx .ncf file. The
syn_forward_io_constraints attribute controls forward annotation.

A value of 1 or true (default) enables forward annotation. A value of 0 or false disables
it.

Use this attribute at the top level of a VHDL or Verilog file, or use the Attributes panel of
the SCOPE spreadsheet to add the attribute as a global object.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=149

150 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 5: Specifying Timing Constraints in Synplify

Clock Groups
If two clocks are in the same clock group, the synthesis tool writes out the Xilinx .ncf file
for forward-annotation so that one clock is a fraction of the other.

In the following example, clk1 is derived as a fraction of clk2, which signals the place
and route tool that the two clocks are part of the same clock group.

NET "clk2" TNM_NET = "clk2";
TIMESPEC "TS_clk2" = PERIOD "clk2" 10.000 ns HIGH 50.00%;
NET "clk1" TNM_NET = "clk1";
TIMESPEC "TS_clk1" = PERIOD "clk1" "TS_clk2" * 2.000000 HIGH 50.00%;

In the following example, the clocks are declared independently, so the place and route
tool considers the clocks separately for timing calculation:

NET "clk2" TNM_NET = "clk2";
TIMESPEC "TS_clk2" = PERIOD "clk2" 10.000 ns HIGH 50.00%;
NET "clk1" TNM_NET = "clk1";
TIMESPEC "TS_clk1" = PERIOD "clk1" 20.000 ns HIGH 50.00%;

Relaxing Forward-Annotated I/O Constraints
If the xc_use_timespec_for_io attribute is enabled (1), I/O constraints are
forward-annotated using the Xilinx TIMESPEC FROM ... TO command. In this case,
there is no relaxation of the constraints.

For more information, see the Synopsys FPGA Synthesis Reference Manual.

The synthesis tool constrains input-to-register, register-to-register and register-to-output
paths with the FREQUENCY constraint. However, if the Period constraint is too tight for
the input-to-register or register-to-output paths, the synthesis tool tries to relax the
constraints to these paths.

Digital Clock Manager/Delay Locked Loop
The synthesis tool can take advantage of the Frequency Synthesis and Phase Shifting
features of Digital Clock Manager (DCM) and Delay Locked Loop (DLL) for Xilinx devices.

If you are using a DLL or DCM for on-chip clock generation, you need only define the
clock at the primary inputs. The synthesis tool propagates clocks through any number of
DLLs or DCMs. It generates clocks at the outputs of a DLL or DCM, as needed, taking into
account any phase shift or frequency change.

To specify the phase shift and frequency multiplication parameters, use Xilinx standard
properties such as:

• duty_cycle_correction

• clkdv_divide

• clkfx_multiply

• clkfx_divide

The synthesis tool also takes into account the fact that these clocks are related
(synchronized) to each other, and puts them in the same clock group. However, only the
clock at the input of a DLL/DCM is forward-annotated in the .ncf file. The back end
tools understand the DLL and DCMs, and do their own clock propagation across them.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=150

Timing Closure User Guide www.xilinx.com 151
UG612 (v 14.3) October 16, 2012

Chapter 6

Timing Analysis

Use the trce command to analyze timing constraints. Run the trce command from:

• Timing Analyzer, or

• The command line.

Multi-Corner, Multi-Node Timing Analysis
The multi-corner, multi-node timing analysis ensures that the timing analysis is
guaranteed over Process, Voltage, and Temperature (PVT) variations.

• The design is analyzed at the Fast Process Corner and at the Slow Process Corner.

• The worst case timing analysis is reported in the Timing Report.

Speed File Values
The Fast Process Corner and Slow Process Corner speed file values are based upon the
characterization data.

• Each Process Corner has maximum and minimum measured delays.

• The Fast Process Corner and Slow Process Corner are analyzed simultaneously.

• The Process Corner with the greatest minimum or maximum variance is reported as
worst case.

This analysis is performed for Virtex®-6, Spartan®-6, and Xilinx 7 series device families
only.

Process Corner Information
The Process Corner information reports which Process Corner was used to characterize the
delay values.

Slow Process Corner

The Slow Process Corner is defined as:

• High temperature

• Low voltage

This is the traditional worst case or maximum PVT.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=151

152 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Fast Process Corner

The Fast Process Corner is defined as:

• Low temperature

• High voltage

This is the traditional absolute minimum speed grade.

Worst Case Analysis
In the majority of designs:

• The Fast Process Corner is reported for the worst case hold analysis.

• The Slow Process Corner is reported for worst case setup analysis.

In some clock and data topologies, the Fast Process Corner is reported for the worst case
setup analysis.

Asynchronous Reset Paths
The analysis of asynchronous reset paths, including the recovery time and reset pin to
output time, is not included in the Period constraint analysis by default.

In order to see asynchronous reset and asynchronous set paths, enable a path tracing
control (PTC) as follows.

• ENABLE = REG_SR_R;

For recovery time

• ENABLE = REG_SR_O;

For output time

These path-tracing controls enable the path from the asynchronous reset pin through the
synchronous element and the reset recovery time of the synchronous element.

The asynchronous SR and CLR recovery paths are controlled by the REG_SR_R PTC. The
asynchronous SR and CLR propagation and removal paths are controlled by the
REG_SR_O PTC. These PTC control individual timing delay names and timing arcs.

Timing Analyzer
The timing constraint is analyzed using Timing Analyzer or the trce command.

This timing analysis:

• Provides a detailed path analysis of the timing path with regards to the timing
constraint requirements.

• Ensures that the specific timing constraints are passed through the implementation
tools.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=152

Timing Closure User Guide www.xilinx.com 153
UG612 (v 14.3) October 16, 2012

Timing Report

The path specific details and includes the following:

• Confirms that the timing requirements were met for all path per constraint.

• Confirms the setup and hold requirements were met for all path per constraint.

• Confirms that the device component are performing within operational frequency
limits.

• Provides a list of unconstrained path that may be a critical path that was not analyzed.

Timing Report
This section discusses a typical Timing Report.

Timing Report Contents
A typical Timing Report contains the following sections:

• Constraint Details

• Data Sheet

• Summary

Constraint Details

The Constraint Details section shows path details per constraint.

Data Sheet

The Data Sheet section shows:

• General Setup

• Hold

• Clock to Out times

Summary

The Summary section shows:

• Timing Errors

• Timing Score

• Constraint Coverage

• Design Statistics

Path Details
The path details are shown under each timing constraint, including the following:

• Constraint header, with:

• Path analyzed

• Endpoints analysis

• Failing endpoints

• Timing errors detected

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=153

154 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

• Minimum Period/Offset In

• Setup Paths

Individual path with setup analysis with a specific slack equation

• Hold Paths

Individual path with hold analysis with a specific slack equation

• Component Switching Limits for Period constraints with a specific slack equation

Period Analysis
periodanalysis

Synchronous to synchronous elements are analyzed in the Period analysis. The Period
constraint defines the timing relationship of the clock domains.

The analysis includes:

• Paths within a single clock domain.

• Paths between related clock domains and related Period constraints.

• Frequency or period; phase; and uncertainty differences between the source and
destination synchronous elements.

• Single clock domain paths.

• Cross-clock domain paths.

Header Summary
The analysis for the Period constraint includes a header summary. The header summary
summarizes information about the constraint, including:

• Number of paths and number of endpoints analyzed

• Setup, hold, or component switching limit errors

This information allows you to verify that the constraint covered the expected number of
endpoints and paths and the overall worst case performance of this constraint.

Component Switching Limit Analysis
The component switching limit analysis:

• Is performed in addition to the traditional setup and hold analysis.

• Ensures that the operating frequency of the device component is not exceeded and is
within device specifications.

• Is performed on:

• Larger device components (such as DSP and BRAM)

• Smaller device components (such as ILOGIC, OLOGIC, and SLICE)

• Clocking components (such as DCM and PLL) in a constrained clock domain

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=154

Timing Closure User Guide www.xilinx.com 155
UG612 (v 14.3) October 16, 2012

Period Analysis

Common Component Switching Limits

The most common component switching limits are:

• MINPERIOD

• MINLOWPULSE

• MINHIGHPULSE

Additional Component Switching Limits

Some components have the following additional component switching limits:

• MAXPERIOD

• MAXLOWPULSE

• MAXHIGHPULSE

Path Analysis Details
The details for each path analyzed are shown after the header summary for the Period
constraint. Each path is a synchronous element to another synchronous element with
either the setup or hold timing of the destination synchronous element.

Period constraints constrain those data paths from synchronous elements to synchronous
elements. The most common examples are:

• Single clock domain

• Two-phase clock domain

• Multiple clock domains

A Timing Report example is provided for each common type of path a Period constraint
may cover in your design.

First Paragraph Contents

The first paragraph includes:

• Overall slack of the path

• Synchronous path performance

• Source design synchronous element

• Destination design synchronous element

• Source and destination clock signal with the corresponding clock edge,

• Total data path delay

• Clock uncertainty

• Slack equation

• Clock uncertainty equations

Second Paragraph Contents

The second paragraph includes the data path details between:

• The source synchronous element, and

• The destination synchronous element.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=155

156 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

This includes the individual elements that make up this data path, which is the device
resource utilized and net routing delays of the data path.

Clock Domains
Period constraints constrain those data paths from synchronous elements to synchronous
elements. The most common examples are:

• Single clock domains

• Two-phase clock domains

• Multiple clock domains

A timing report example is provided for each common type of path a Period constraint
may cover in your design.

Gated Clocks
The Period constraint does not analyze gated or internally derived clocks correctly. If the
clock is gated or goes through a LUT, the timing analysis traces back through each input of
the LUT to the source (synchronous elements or pads) of the signals and reports the
corresponding Clock Skew.

The Clock Skew derived from a LUT is very large, depending on the levels of logic or
number of LUTs.

If the clock has been divided by using internal logic and not by a DCM, the Period
constraint on the clock pin of the Divide Down Flip Flop does not trace through this
flip-flop to the clk_div signal. See the following figure.

The timing analysis does not include the downstream synchronous elements, which are
driven by the new gated-clock signal.

Unless a global buffer is used, the new clock derived from the Divide Down Flip-Flop is on
local routing. If a Period constraint is placed on the output of the Divide down Flip-Flop
(shown as the clk_div signal in the following figure), and is related back to the original
Period constraint, the timing analysis includes the downstream synchronous elements.

To ensure that the relationship and the cross-clock domain analysis is correct, include the
difference between the divided clock and the original clock in the Period constraint with
the Phase keyword. The Clock Skew can be large, depending on the relationship between
the two clocks.

Because the Phase keyword defines the difference between the two clocks, this becomes
the timing constraint requirement for the cross clock domain path analysis. If the Phase
keyword value is too small, it is impossible to meet the cross clock domain path analysis.
X-Ref Target - Figure 6-1

Figure 6-1: Gated Clock with Divide Down Flip Flop

REG

D Q

CLK

REG

D Q

CLK

REG

D Q

CLK

REG

D Q

CLK

REG

D Q

CLK

IN
V

Clock

Clk_div

X11093

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=156

Timing Closure User Guide www.xilinx.com 157
UG612 (v 14.3) October 16, 2012

Clock Domains

Single Clock Domain
A single clock domain is easy to understand and analyze. All synchronous elements are on
the same clock domain, and are analyzed on the rising-edge of the clock or all elements are
analyzed on the falling-edge of the clock.

The clock source is driven by the same clock source, which can be a PAD, DCM, DLL, PLL,
or PMCD component with only one output.

The timing analysis tool reports the active edges of the clock driver and the corresponding
time for the data path between the synchronous elements.

The following figure shows a simple design. The Period constraint is analyzed from the
User Constraints File (UCF).

Single Clock Domain Timing Report Example

Slack (setup path): 3.904ns (requirement - (data path - clock path skew + uncertainty))
 Source: IntA_1 (FF)
 Destination: XorA_1 (FF)
 Requirement: 8.000ns
 Data Path Delay: 4.036ns (Levels of Logic = 1)
 Clock Path Skew: 0.000ns
 Source Clock: clk0 rising at 0.000ns
 Destination Clock: clk0 rising at 8.000ns
 Clock Uncertainty: 0.060ns

Two-Phase Clock Domain
The analysis of a data path that uses both edges of the clock is known as a two-phase clock
domain, or a two-phase data path. See the following figure.

This clock can be driven by the same clock source, such as a PAD, DCM, DLL, PLL, or
PMCD component with only one output. These synchronous elements can also be driven
by two related clocks, such as the CLK0 and CLK180 or CLK90 and CLK270 of a DCM,
DLL, PLL, or PMCD component.

The timing analysis tool reports the active clock signal and the corresponding active clock
arrival time for the source and destination synchronous element. The difference in clock

X-Ref Target - Figure 6-2

Figure 6-2: Single Clock Domain Schematic

X11094

D

OBUFIBUF

IBUFG

DATA_OUT

CLK

DATA_IN
OPADIPAD

IPAD

Q D

FDFD

CC

Q

X-Ref Target - Figure 6-3

Figure 6-3: Two-Phase Clock

X11095

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=157

158 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

arrival times for the source and destination synchronous elements determines the data
path requirement. In a two-phase data path, the data path requirement is a fraction of the
single-phase data path requirement. See the following figure.

The timing analysis tool reports the data path details by the slack value. The slack value
states the relationship between the data path requirement and the data path delays. The
data paths are ordered based upon the slack value, with the largest negative values
(falling) down to the largest positive values (passing).

Minimum Period Value

Occasionally the largest worst or negative slack value data path does not match the
Minimum Period value. This failure is usually caused by the slack value of a two-phase
data path that is not on the top of the list of data paths.

In the majority of the cases, the data path at the top of the list corresponds to the Minimum
Period value. In some cases the two-phase data path corresponds to the Minimum Period
value. In the two-phase data path situation, the timing analysis tools determine the
fractional relationship between the original single or full phase data path requirement and
the two-phase data path requirement.

This fractional value is used to convert the total data path delay of the two-phase data path
back to a single or full phase data path delay equivalent. If the fractional relationship is
determined to be half, the two-phase data path delay is doubled for the full phase data
path delay equivalent. The Minimum Period value is only in full phase data path delay, not
fractional data path delays.
X-Ref Target - Figure 6-4

Two-Phase Example Design with Period Constraint

An example design with a Period constraint or full-phase data path requirement of 6ns has
both full-phase and two-phase data paths.

Although the full-phase data path is at the top of the list, followed by the two-phase data
path, the Minimum Period value is 8.192ns. The Minimum Period value corresponds to the
two-phase data path, not the full-phase data path.

Figure 6-4: Relationship Between Single-Phase and Two-Phase Clocks

X11096

Single-Phase Maximum

Two-Phase Maximum

Table 6-1: Example Design with Period Constraint

Data Path Total Data Path Delay (ns) Slack (ns)

Full-Phase 8 -2

Two-Phase 4.036 -1.096

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=158

Timing Closure User Guide www.xilinx.com 159
UG612 (v 14.3) October 16, 2012

Clock Domains

Timing Report Example One

Slack (setup path): -1.096ns (requirement - (data path - clock path skew + uncertainty))
Source: IntA_1 (FF)
Destination: XorA_1 (FF)
Requirement: 3.000ns
Data Path Delay: 4.036ns (Levels of Logic = 1)
Clock Path Skew: 0.000ns
Source Clock: clk0 rising at 0.000ns
Destination Clock: clk0 falling at 3.000ns
Clock Uncertainty: 0.060ns

Timing Report Example Two

Timing constraint: TS_DRAM_CTRL_U_u_infrastructure_clk_pll = PERIOD TIMEGRP
 "DRAM_CTRL_U_u_infrastructure_clk_pll" TS_clk_303 / 0.5 HIGH 50%;

56924 paths analyzed, 17458 endpoints analyzed, 366 failing endpoints
452 timing errors detected. (366 setup errors, 86 hold errors, 0 component switching limit
errors)
Minimum period is 24447.220ns.
--

Paths for end point DRAM_CTRL_U/bank_conflict (SLICE_X39Y106.C3), 31 paths
--
Slack (setup path): -3.666ns (requirement - (data path - clock path skew + uncertainty))
 Source: DRAM_CTRL_U/out_add[1].rd_addr_fifo/USE_SDPRAM_LUT.sdpram_lut_inst/
depth_le_5.gen_sdpram[0].sdpram32_RAMB (RAM)
 Destination: DRAM_CTRL_U/bank_conflict (FF)
 Requirement: 0.002ns
 Data Path Delay: 3.146ns (Levels of Logic = 3)(Component delays alone exceeds
constraint)
 Clock Path Skew: -0.250ns (2.637 - 2.887)
 Source Clock: clk_250 rising at 13312.000ns
 Destination Clock: DRAM_CTRL_U/clk rising at 13312.002ns
 Clock Uncertainty: 0.272ns

 Clock Uncertainty: 0.272ns ((TSJ^2 + DJ^2)^1/2) / 2 + PE
 Total System Jitter (TSJ): 0.070ns
 Discrete Jitter (DJ): 0.157ns
 Phase Error (PE): 0.185ns

 Maximum Data Path at Slow Process Corner: DRAM_CTRL_U/out_add[1].rd_addr_fifo/
USE_SDPRAM_LUT.sdpram_lut_inst/depth_le_5.gen_sdpram[0].sdpram32_RAMB to DRAM_CTRL_U/
bank_conflict
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --- -------------------
 SLICE_X42Y107.BMUX Tshcko 1.492 DRAM_CTRL_U/rd_addr_pre<1><1>
 DRAM_CTRL_U/out_add[1].rd_addr_fifo/
USE_SDPRAM_LUT.sdpram_lut_inst/depth_le_5.gen_sdpram[0].sdpram32_RAMB
 SLICE_X41Y107.D5 net (fanout=3) 0.331 DRAM_CTRL_U/rd_addr_pre<1><2>
 SLICE_X41Y107.D Tilo 0.068 DRAM_CTRL_U/rd_addr_1<2>
 DRAM_CTRL_U/
Mmux_last_bank[2]_last_bank[2]_MUX_834_o11
 SLICE_X41Y106.C4 net (fanout=1) 0.502 DRAM_CTRL_U/
Mmux_last_bank[2]_last_bank[2]_MUX_834_o1
 SLICE_X41Y106.C Tilo 0.068 DRAM_CTRL_U/n0728<0>

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=159

160 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

 DRAM_CTRL_U/
Mmux_last_bank[2]_last_bank[2]_MUX_834_o12
 SLICE_X39Y106.C3 net (fanout=1) 0.612 DRAM_CTRL_U/
Mmux_last_bank[2]_last_bank[2]_MUX_834_o11
 SLICE_X39Y106.CLK Tas 0.073 DRAM_CTRL_U/bank_conflict
 DRAM_CTRL_U/
Mmux_last_bank[2]_last_bank[2]_MUX_834_o19
 DRAM_CTRL_U/bank_conflict
 --- ---------------------------
 Total 3.146ns (1.701ns logic, 1.445ns route)
 (54.1% logic, 45.9% route)

In Timing Report Example Two, Minimum period is 24447.220 ns is based upon the clock
arrival relationship between the Source Clock and the Destination Clock. The timing
engine:

1. Analyzes these clock networks, and

2. Determines the two closest clock edges in time.

The two closest clock edges are reported as clock arrival times. The difference is defined as
the Requirement. This requirement is a fraction of the full-cycle Period constraint
requirement. Because the full-cycle Period constraint requirement is 13.33 ns, the
relationship between the new requirement and the original full-cycle requirement is 1/
6665.

This setup path analysis is 1/6665 portion of the full-cycle. The Minimum period value is
a full-cycle value. When the setup total (3.668ns) is multiplied by 6665, the Minimum
period is 24,447.220 ns.

Multiple Clock Domains
A cross clock domain path has two different clocks for the source and destination
synchronous elements. One clock drives the source. A different clock drives the
destination.

If the source clock Period constraint is related to the destination clock Period constraint, the
destination clock Period constraint covers the cross clock domain analysis.

Xilinx® recommends relating the clocks by means of Period constraints. By so doing, the
analysis properly includes the cross clock domain paths.

If the clocks are not related, the cross clock domain paths are not analyzed. Xilinx
recommends using a From:To or Multi-Cycle constraint to either flag it as a false path, or as
a Multi-Cycle path.

Clocks from DCM outputs
Because the clock signals produced by a DCM, DLL, PLL, or PMCD component are related
to each other, the Period constraints should also be related.

To relate the Period constraints:

• Allow NGDBuild to create new Period constraints based upon the input clock signal
Period constraint.

OR

• Manually create Period constraints based upon the output clock signals of the DCM,
DLL, PLL, or PMCD component, and manually relate the Period constraints.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=160

Timing Closure User Guide www.xilinx.com 161
UG612 (v 14.3) October 16, 2012

Clock Domains

Clk0 Clock Domain
Because the clocks produced by the DCM, DLL, PLL, or PMCD component are related, the
timing tools consider this relationship during analysis. The synchronous element clock pin
is driven by the same clock net from a DCM, DLL, PLL, or PMCD component output. The
timing analysis tool reports the active edges of the clock and the corresponding time for the
data path between the synchronous elements.

The example in the following figure shows a CLK0 clock circuit with a simple design. This
clock domain has the same requirement and phase shifting as the original requirement.
X-Ref Target - Figure 6-5

Clk0 DCM Output Timing Report Example

Slack (setup path): 3.904ns (requirement - (data path - clock path skew + uncertainty))
 Source: IntA_1 (FF)
 Destination: XorA_1 (FF)
 Requirement: 8.000ns
 Data Path Delay: 4.036ns (Levels of Logic = 1)
 Clock Path Skew: 0.000ns
 Source Clock: clk0 rising at 0.000ns
 Destination Clock: clk0 rising at 8.000ns
 Clock Uncertainty: 0.060ns

Clk90 Clock Domain
Because the clocks produced by the DCM, DLL, PLL, or PMCD component are related, the
timing tools consider this relationship during analysis. The synchronous element clock
pins are driven by different clock nets from a DCM, DLL, PLL, or PMCD component
output. The timing analysis tool reports the active edges of the clock and the
corresponding time for the data path between the synchronous elements.

Clk90 Clock Phase Between DCM Outputs Schematic

The example in the following figure shows CLK0 and CLK90 signals where the phase
difference is 90 degrees.

Figure 6-5: Clk0 DCM Output Schematic

D

C

Q

X11097

FD

D

C

Q

FD

CLKIN

DATA_IN FD1

CLK1XCLK1X

CLK1X
CLK1X

DATA_OUT

CLKO_DLL

OBUFIBUF

BUFGIBUFG

OPADIPAD

IPAD

CLKDLL
CLKIN CLK0

CLK90

CLK180

CLK270

CLK2X

CLKDV
LOCKED

CLKFB

RST

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=161

162 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Another cause of the Minimum Period value differing from the first path listed in the
Timing Report is a cross-clock domain analysis of phase-shifted clocks.

If the phase difference between the two clock domains is 90 degrees, the total data delay is
multiplied by four to get to a full period value.

If the data path is 1.5ns for this clock90 constraint, the equivalent full period value is 6 ns.

In addition, for this example, the data path goes from a falling-edge of CLK0 clock signal to
the rising-edge of CLK90 clock signal, and the timing analysis includes the two-phase
information from CLK0 to do the analysis. See the following figure.

Although the original Period constraint was set to 20 ns, this cross-clock domain analysis
has a new requirement of 15 ns. This new requirement compensates for the phase
difference between the two clocks. See the preceding figure.
.

Clk90 Timing Report Example

Slack (setup path): 5.398ns (requirement - (data path - clock path skew + uncertainty))
 Source: IntB_2 (FF)
 Destination: XorB_2 (FF)
 Requirement: 8.000ns
 Data Path Delay: 2.542ns (Levels of Logic = 1)
 Clock Path Skew: 0.000ns
 Source Clock: clk0 falling at 2.000ns
 Destination Clock: clk90 rising at 10.000ns
…
Slack (setup path): 13.292ns (requirement - (data path - clock path skew + uncertainty))
 Source: IntC_2 (FF)
 Destination: XorB_2 (FF)
 Requirement: 15.000ns
 Data Path Delay: 2.594ns (Levels of Logic = 1)
 Clock Path Skew: -0.086ns
 Source Clock: clk0 falling at 10.000ns
 Destination Clock: clk90 rising at 25.000ns
 Clock Uncertainty: 0.200ns

X-Ref Target - Figure 6-6

Figure 6-6: Clk90 Clock Phase Between DCM Outputs Schematic

X-Ref Target - Figure 6-7

Figure 6-7: Clock Edge Relationship

X11098

DCM D Q D Q

FF_0F

CLKIN
CLK0

CLK90

FF_90

clk20_90g

clk20

X11099

0 10 20

15 ns

30 40

5 15 25 35

CLK0

CLK90

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=162

Timing Closure User Guide www.xilinx.com 163
UG612 (v 14.3) October 16, 2012

Clock Domains

Clk2x Clock Domain
Because the clocks produced by the DCM, DLL, PLL, or PMCD component are related, the
timing tools consider this relationship during analysis. The following figure shows a
simple design of a CLK2X clock domain. The clock is driven by the same clock source. This
clock source is an output of a DCM, DLL, PLL, or PMCD component.

The timing analysis tool reports the active edges of the clock and the corresponding time
for the data path between the synchronous elements. This clock domain has the
requirement of the original requirement. The phase shifting is the same as the phase
shifting of the original requirement.
X-Ref Target - Figure 6-8

Clk2x Timing Report Example

Slack (setup path): -1.663ns (requirement - (data path - clock path skew + uncertainty))
 Source: IntA_3 (FF)
 Destination: OutB_3 (FF)
 Requirement: 2.000ns
 Data Path Delay: 3.443ns (Levels of Logic = 0)
 Clock Path Skew: -0.020ns
 Source Clock: clk2x rising at 0.000ns
 Destination Clock: clk2x falling at 2.000ns
 Clock Uncertainty: 0.200ns

CLKDV/CLKFX Clock Domain
Because the clocks produced by the DCM, DLL, PLL, or PMCD component are related, the
timing tools consider this relationship during analysis. Use the CLKDV and CLKFX
outputs to create clock signals that are derivatives of the original input clock signal. See
Table 3-1, Transformation of Period Constraint Through DCM.

The clock is driven by two different outputs of the DCM, DLL, PLL, or PMCD component.
The timing analysis tool reports the active edges of the clock and the corresponding time
for the data path between the synchronous elements.

The following figure shows a simple design of a CLKDV clock domain, with the
DIVIDE_BY factor set to 2.

• This clock domain has twice the requirement as the original requirement.

• The phase shifting is the same as the phase shifting of the original requirement.

Figure 6-8: Clk2x DCM Output Schematic

D

C

Q

X11100

FD

D

C

Q

FD

CLKIN

DATA_IN FD1

CLK2XCLK2X

CLK2X

CLK2X

DATA_OUT

CLK2X_DLL

OBUFIBUF

IBUFG

OPADIPAD

IPAD

CLKDLL
CLKIN CLK0

CLK90

CLK180

CLK270

CLK2X

CLKDV
LOCKED

CLKFB

RST

BUFG

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=163

164 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

X-Ref Target - Figure 6-9

ClkDV Timing Report Example

Slack (setup path): 1.909ns (requirement - (data path - clock path skew + uncertainty))
 Source: XorC_7 (FF)
 Destination: OutC_7 (FF)
 Requirement: 4.000ns
 Data Path Delay: 1.810ns (Levels of Logic = 0)
 Clock Path Skew: 0.000ns
 Source Clock: clk0 rising at 0.000ns
 Destination Clock: clkdv rising at 4.000ns
 Clock Uncertainty: 0.281ns

From:To (Multi-Cycle) Analysis
multicycleanalysis

The analysis of path exceptions is associated with From-To constraints. The path exception
constraints override global constraints for a specific set of paths specified in the From:To
constraint.

This constraint specifies a unique timing requirement for a specific set of paths with a
faster or slower requirement than the global timing constraints. The requirement can be a
value, or a Timing Ignore.

Header Summary
The analysis of the exception constraint starts with a header summary. The header
summary is a summary of the specific constraint and contains:

• Constraint syntax

• Number of paths and endpoints covered by the constraint

• Setup errors

• Hold errors

The information in the header summary:

• Verifies that the constraint covers the expected number of paths and endpoint.

• Provides an overall worst case performance of the constraint.

Figure 6-9: ClkDV DCM Output Schematic

D

C

Q

X11101

FD

D

C

Q

FD

CLKIN

DATA_IN FD1

CLKDVCLKDV

CLK0

CLKDV

DATA_OUT

CLKDV_DLL

OBUFIBUF

IBUFG

OPADIPAD

IPAD

CLKDLL

MYDLL

CLKIN CLK0

CLK90

CLK180

CLK270

CLK2X

CLKDV
LOCKED

CLKFB

RST BUFG

CLK0
BUFG

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=164

Timing Closure User Guide www.xilinx.com 165
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Analysis

Analysis of the Exception Constraint Path
The analysis of the exception constraint path includes the path details for the clock and
data paths. This analysis contains all the information for a single path.

First Paragraph Contents

The first paragraph includes:

• Overall slack value

• Source and destination design elements

• Source clock and destination clock signals and clock edges

• Total data path delay

• Clock skew

• Clock uncertainty

• Slack equations

• Clock uncertainty equations.

Second Paragraph Contents

The second paragraph provides the path details for the clock and data paths for the output
interface. This includes the description of all device resources utilized and the routing
delays for both clocking and data paths.

Analysis of the From:To (Multi-Cycle) Constraint
The analysis of the From:To (Multi-Cycle) constraint includes the clock skew between the
source and destination synchronous elements.

Clock skew is calculated based upon the clock path to the destination synchronous
element, minus the clock path to the source synchronous element.

Clock skew is analyzed for all constrained clocks. The analysis includes:

• Setup analysis for all device families.

• Setup and hold analysis for Virtex-5 devices and newer.

DATAPATHONLY Keyword
The DATAPATHONLY keyword:

• Instructs the tools to ignore the clock skew in From:To constraints.

• Indicates that the From:To constraint does not take clock skew or phase information
into account during analysis.

• Results in only the data path between the groups being considered and analyzed.

Setup and Hold Analysis
Setup paths are sorted by slacks, based upon the following equation:

Tsu slack = constraint_requirement - Tclock_skew - Tdata_path - Tsu

The setup analysis of a From:To is done by default. The hold analysis is reported for
Virtex-5 devices and newer by default.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=165

166 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

For older devices, set the environment variable (XIL_TIMING_HOLDCHECKING YES) to
enable the hold analysis.

Hold analyses are performed on register-to-register paths by taking the data path
(Tcko+Troute_total+Tlogic_total) and subtracting the clock skew (Tdest_clk -
Tsrc_clk) and the register hold delay (Th).

Evaluating the Hold Check

The TWR Report uses slack to evaluate the hold check.

Hold Slack Calculations

Use the following equation for hold slack calculations:

Hold Slack = Tdata - Tskew - Th

Detailed Path Reporting

The detailed path is reported under the constraint that contains that data path. The path is
listed by the slack with respect to the requirement.

There is a (-Th) identifier of the hold path delay type. This (-Th) identifier appears after
the hold delay type to help identify race conditions and hold violations.

Hold Analyses

Hold analyses are performed on all global and local clock resources. The data path is not
adjusted to show possible variances in the PVT across the silicon.

Hold Violations

Hold violations are rare. A very short data path delay and a large clock skew must coincide
before this problem occurs.

If a hold violation does occur, PAR can change the routing to fix the violation. PAR and the
timing engines:

• Reduce the clock skew.

• Increase the clock delay for a specific data path if necessary.

Hold Slack

The hold slack is not related to the constraint requirement. This may be confusing when
reviewing the slack and the minimum delay ns period for the constraint.

The hold slack is related to the relationship between the clock skew and the data path
delay. Only the slack from setup paths affects the minimum delay ns period for the
constraint.

Table 6-2: Hold Violations

Slack Hold Violation

Negative Yes

Positive No

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=166

Timing Closure User Guide www.xilinx.com 167
UG612 (v 14.3) October 16, 2012

From:To (Multi-Cycle) Analysis

Accounting for Known External Skew

The From:To constraint requirement will account for any known external skew between
the clock sources if:

• The endpoint registers do not share a common clock, or

• The clocks are unrelated to each other.

If the registers share any single common clock source, the skew is calculated only for the
unique portions of the clock path to the synchronous elements. If no common clock source
points are found, the skew is the difference between the maximum and minimum clock
paths.

The path header:

• Reports the clock skew.

• Does not include the delay details to the source clock pin and destination clock pin.

To determine these delays, use Analyze Against User Specified Paths ... by
defining Endpoints... in Timing Analyzer.

1. Specify the clock pad input as the source.

2. Specify the registers or synchronous elements in the hold or setup analysis as the
destination.

The clock delay from the pad to each register clock pin is reported. This custom analysis
also works for DLL, DCM, and PLL clock paths.

To obtain the clock skew, subtract the destination clock delay from the source clock delay. The
paths are sorted by total path delay and not slack.

Example One

Constrain the DQS path from an IDDR to the DQ CE pins to be approximately one-half
cycle. This insures that the DQ clock enables are de-asserted before any possible DQS
glitch at the end of the read postamble can arrive at the input to the IDDR. This value is
clock-frequency dependent.

INST */gen_dqs*.u_iob_dqs/u_iddr_dq_ce TNM = TNM_DQ_CE_IDDR;
INST */gen_dq*.u_iob_dq/gen_stg2_*.u_iddr_dq TNM = TNM_DQS_FLOPS;
TIMESPEC TS_DQ_CE = FROM TNM_DQ_CE_IDDR TO TNM_DQS_FLOPS TS_SYS_CLK * 2;

The requirement is based upon the system clock.

Example Two

Constrain the paths from a select pin of a MUX to the next stage of capturing synchronous
elements. This value is clock-frequency dependent:

NET clk0 TNM = FFS TNM_CLK0;
NET clk90 TNM = FFS TNM_CLK90;
MUX Select for either rising/falling CLK0 for 2nd stage read capture
INST */u_phy_calib_0/gen_rd_data_sel*.u_ff_rd_data_sel TNM = TNM_RD_DATA_SEL;
TIMESPEC TS_MC_RD_DATA_SEL = FROM TNM_RD_DATA_SEL TO TNM_CLK0 TS_SYS_CLK * 4;

This requirement is based upon the system clock.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=167

168 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Example Three

Constrain the path between DQS gate driving IDDR and the clock enable input to each DQ
capture IDDR in that DQS group. This requirement is frequency dependent. The user sets
the following requirement:

INST */gen_dqs[*].u_iob_dqs/u_iddr_dq_ce TNM = TNM_DQ_CE_IDDR;
INST */gen_dq[*].u_iob_dq/gen_stg2_*.u_iddr_dq TNM = TNM_DQS_FLOPS;
TIMESPEC TS_DQ_CE = FROM TNM_DQ_CE_IDDR TO TNM_DQS_FLOPS 1.60 ns;

This requirement is based upon a system clock of 333 MHz.

Offset In Analysis
offsetinanalysis

The input timing analysis includes the following constraints:

• Offset In

• From:Pads:To

• Both Offset In and From:Pads:To

The input timing constraint covers the data path from the external pin or pad of the FPGA
to the internal synchronous element or register that captures that data.

The traditional constraint for this path is Offset In.

• Offset In specifies the input timing for the design.

• Offset In defines the relationship between the data and clock edge used to capture that
data at the pin or pads of the device.

This analysis is used to analyze the setup and the hold paths of the synchronous elements,
which capture the data. The internal routing and delays of the clock and data paths are
included in the Offset In analysis in the timing analysis tools. The frequency and the phase
transformation of the clock, clock uncertainties, IOStandard, and other data delay
adjustments.

Worst Case Paths

The Timing Object Table shows the worst case paths for the selected constraint. The table
shows each patch per row, including common timing analysis details.

The common timing analysis details include the following elements:

• Slack

• Data Path

• Clock Path

• Source

• Destination

Constraint Summary

The details of each Timing Report constraint show a summary of the constraint, including:

• The number of paths and the endpoints covered by the constraint

• Setup errors

• Hold errors

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=168

Timing Closure User Guide www.xilinx.com 169
UG612 (v 14.3) October 16, 2012

Offset In Analysis

Use the analysis information to:

• Verify that the constraint covered the expected number of path and endpoints.

• View a high-level view of the performance of the constraint.

Bus Base Analysis

The bus base analysis for input timing paths includes the input timing interfaces consisting
of several data signals associated with a single input clock. The interface depends greatly
on the entire bus operating correctly. The bus-based timing analysis of the interface and the
analysis of each bit of the bus is included.

The bus base analysis provides specific detailed analysis for each bit of the bus in order to:

• Determine the common sources of errors

• Determine how to adjust clock and data delay to optimize bus performance.

Bus Base Analysis Summary

During the bus base analysis, the datasheet section of the Timing Report contains a
sub-section with a summary of the bus base analysis.

High Level Timing Detail

The sub-section provides a high level timing detail for each bit of the interface bus. These
details are based upon the detailed section of the Timing Report under the Offset In
constraint. They include:

• Setup and hold requirements

• Setup and hold slacks for each bit of the capturing register or synchronous element
inside the device

Overall Bus Performance

The sub-section also displays more information on the overall bus performance of the bus.
This includes the worst case summary row and source offset to center column.

• Source Offset to Center

Provides the data path delay adjustments required to center the data bits of the
interface over the clock edge to provide maximum timing margin for this interface.

• Ideal Clock Offset to Actual Clock

Provides the clock path delay adjustment required to center the clock edge with
respect to the bus. This additional clock path delay is usually done by Phase shifting
the clock through a clock modifying block (DCM, PLL, or MMCM).

• Worst Case Data

Provides the overall worst case setup, plus hold time window for the bus interface.

Detailed Path Analysis
The detailed path analysis section of the Timing Report provides clock and data path
details of the input interface. This analysis includes all the necessary delays for the setup
and hold analysis of the input interface.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=169

170 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Detailed Path Analysis Section Contents

This section discusses the detailed path analysis section contents.

Summary Header

For each Offset In constraint, a summary header provides information about the:

• Constraint syntax

• Paths analyzed

• Endpoints analyzed

Path Header

For each path analyzed, a path header provides:

• Summary of the input timing path performance in a slack value

• Slack equation of the timing check

• Source pad and destination synchronous element information

• Capturing clock network name and clock edge

• Clock and data path delay totals

• Clock uncertainty

Data and Cock Path Details

The data and clock path details include a detailed description of all component and routing
network delays utilized for both the clock and data paths of an input interface.

Offset In Constraint

The Offset In constraint:

• Defines the Pad-To-Setup timing requirement

• Is an external clock-to-data relationship specification

Setup Requirement

The setup requirement is:

(data_delay + setup - clock_delay - clock_arrival)

When analyzing the setup requirement, the Offset In constraint takes into account the:

• Clock delay

• Clock edge

• DLL or DCM introduced clock phase

Clock Arrival

Clock arrival takes into account any clock phase generated by the DLL or DCM, or clock
edge. If the Timing Report does not display a clock arrival time for an Offset constraint, the
timing analysis tools did not analyze a Period constraint for that specific synchronous
element.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=170

Timing Closure User Guide www.xilinx.com 171
UG612 (v 14.3) October 16, 2012

Offset In Analysis

Creating Pad-To-Setup Requirements

When you create pad-to-setup requirements, incorporate any phase or Period adjustment
factor into the value specified for an Offset In constraint.

For the following example, see the schematic in Figure 3-3, Timing Name on the A0 Net
Traced Through Combinatorial Logic to Synchronous Elements (Flip-Flops).

If the net from the CLK90 pin of the DLL or DCM clocks a register, adjust the Offset value
by one quarter of the Period constraint value.

For example, if the Period constraint value is 20 ns, and is from the CLK90 of the DCM,
adjust the Offset In value by an additional 5 ns.

• Original Constraint

NET "PAD_IN" OFFSET = IN 10 BEFORE "PADCLKIN";

• Modified Constraint

NET "PAD_IN" OFFSET = IN 15 BEFORE "PADCLKIN"

The clock net name required for Offset constraints is the clock net name attached to the
IPAD. In the above example, the clock pad is PADCLKIN, not CLK90.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=171

172 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Offset In Before Constraint
The Offset In Before constraint defines the time available for data to propagate from the
pad to setup at the synchronous element. See the following figure. This time can be
visualized as the time that the data arrives at the edge of the device before the next clock
edge arrives at the device.

This OFFSET = IN 2 ns BEFORE clock_pad constraint reads that the data is valid at
the input data pad, some time period (2 ns) BEFORE the reference clock edge arrives at the
clock pad. The tools calculate and control internal data and clock delays to meet the
flip-flop setup time.

Setup Relationship Equation
The following equation defines the setup relationship.

TData + TSetup - TClock <= Toffset_IN_BEFORE

where

TSetup = Intrinsic Flip Flop setup time
TClock = Total Clock path delay to the Flip Flop
TData = Total Data path delay from the Flip Flop
Toffset_IN_BEFORE = Overall Setup Requirement

Offset In Requirement Value
The Offset In requirement value is used as a setup time requirement of the FPGA device
during the setup time analysis.

Valid Keyword

The Valid keyword:

• Is used in conjunction with the requirement to create a hold time requirement during
a hold time analysis.

• Specifies the duration of the incoming data valid window, and the timing analysis
tools do a hold time analysis.

By default, the Valid value is equal to the Offset time requirement, which specifies a zero
hold time requirement (see the following figure).

X-Ref Target - Figure 6-10

Figure 6-10: Circuit Diagram with Calculation Variables for Offset In Before
Constraints

X11102

CLK

IN

T_CLK_IN

T_DATA_IN

OFFSET-IN

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=172

Timing Closure User Guide www.xilinx.com 173
UG612 (v 14.3) October 16, 2012

Offset In Before Constraint

If the Valid keyword is not specified, no hold analysis is done by default. In order to receive
hold analysis without the Valid keyword, use the fastpaths option (trce
-fastpaths) during timing analysis.

Hold Relationship Equation
The following equation defines the hold relationship.

TClock - TData + Thold <= Toffset_IN_BEFORE_VALID

where

Thold = Intrinsic Flip Flop hold time
TClock = Total Clock path delay to the Flip Flop
TData = Total Data path delay from the Flip Flop
Toffset_IN_BEFORE_VALID = Overall Hold Requirement

Offset In Constraint with Valid Keyword Coding Example

TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK RISING;
TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK FALLING;

The Offset constraint is analyzed with respect to the rising clock edge, which is specified
with the High keyword of the Period constraint. Set the Offset constraint to Rising or
Falling to override the High or Low setting defined by the Period constraint.

This is extremely useful for DDR design, with a 50 percent duty cycle, when the signal is
capturing data on the rising and falling clock edges, or producing data on rising and falling
clock edges.

For example, if the Period constraint is set to High, and the Offset constraint is set to
Falling, the falling edged synchronous elements have the clock arrival time set to zero.

Offset In Constraint Set to Rising and Falling Coding Example

Following is an example of the Offset In constraint set to Rising and Falling:

TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK FALLING;
TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK RISING;

The equation for external setup included in the Offset In analysis of the FPGA device is:

External Setup = Data Delay + Flip Flop Setup time - Prorated version of Clock Path Delay

The longer the clock path delay, the smaller the external setup time becomes. The prorated
clock path delay is used to obtain an accurate setup time analysis. The general prorating
factors are 85% for Global Routing and 80% for Local Routing.

X-Ref Target - Figure 6-11

Figure 6-11: Offset In Constraint with Valid Keyword Schematic Example

X11103

FPGA

FF

D

SUT

DataDataExt

ClkExt

T

ClkT

HT/

CLK

Q

VALID Data

VALID Duration

OFFSET IN
BEFORE

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=173

174 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

The prorated clock path delays are not used for families older than Virtex-II device
families.

The equation for external hold included in the Offset In analysis of the FPGA device is:

External Hold = Clock Path Delay + Flip Flop Hold time - Prorated version of Data Delay

If the data delay is longer than the clock delay, the result is a smaller hold time. The
prorated data delays are similar to the prorated values in the setup analysis.

The prorated data delays are not used for families older than Virtex-II device families.

Offset In Constraint Simple Example

A simple example of the Offset In constraint has an initial clock edge at 0 ns based upon the
Period constraint. The Timing Report displays the initial clock edge as the clock arrival
time.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

If the Timing Report does not display a clock arrival time, the timing analysis tools did not
recognize a Period constraint for that particular synchronous element.

In the following figure, the Offset requirement is 3 ns before the initial clock edge. The
equation used in timing analysis is:

Slack = (Requirement - (Data Path - Clock Path - Clock Arrival))

Constraint Syntax Example

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = IN 3 ns BEFORE clock;

Timing Report Example

Slack: -0.191ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: reset (PAD)
 Destination: my_oddrA_ODDR_inst/FF0 (FF)
 Destination Clock: clock0_ddr_bufg rising at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 2.784ns (Levels of Logic = 1)
 Clock Path Delay: -0.168ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Two-Phase Example

A two-phase or both clock edge example of the Offset In constraint has an initial clock edge
which correlates to the two edges of the clock:

X-Ref Target - Figure 6-12

Figure 6-12: Timing Diagram of Simple Offset In Constraint

clock_in

data

3 ns

X11104

10 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=174

Timing Closure User Guide www.xilinx.com 175
UG612 (v 14.3) October 16, 2012

Offset In Before Constraint

• The first clock edge is 0 ns based upon the Period constraint

• The second clock edge is one-half the Period constraint

The Timing Report displays the clock arrival time for each edge of the clock.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

In this example, the Period constraint has the clock arrival on the falling edge, based upon
the Falling keyword. Therefore, the clock arrival time for the falling edge synchronous
elements is zero. The rising edge synchronous elements is one-half the Period constraint. If
both edges are used, as in Dual-Data Rate, two Offset constraints are created: one for each
clock edge.

In the following figure, the Offset requirement is 3 ns before the initial clock edge. If the
Period constraint is set to High, and the Offset In constraint is set to Falling, the following
constraints produce the same example report:

TIMESPEC TS_clock = PERIOD clock 10 ns HIGH 50%;
OFFSET = IN 3 ns BEFORE clock RISING;
OFFSET = IN 3 ns BEFORE clock FALLING;

TIMESPEC TS_clock=PERIOD clock 10 ns LOW 50%;
OFFSET=IN 3 ns BEFORE clock;

Timing Report Example

Slack: 0.231ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: DataD<9> (PAD)
 Destination: TmpAa_1 (FF)
 Destination Clock: clock0_ddr_bufg falling at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 2.492ns (Levels of Logic = 2)
 Clock Path Delay: -0.038ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Phase-Shifted Example

A DCM phase-shifted clock (CLK90) example of the Offset In constraint has an initial clock
edge at 0 ns based upon the Period constraint. Because the clock is phase-shifted by the
DCM, the Timing Report displays the clock arrival time as the phase-shifted amount. If the
CLK90 output is used, the phase-shifted amount is one quarter of the Period.

X-Ref Target - Figure 6-13

Figure 6-13: Timing Diagram with Two-Phase Offset In Constraint

clock_in

data

3 ns

X11105

10 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=175

176 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

In this example:

• The Period constraint has the initial clock arrival on the rising edge.

• The clock arrival value is at 2.5 ns.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

In the following figure, the Offset requirement is 3 ns before the initial clock edge.

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET=IN 3 ns BEFORE clock;

Timing Report Example

Slack: 2.309ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: reset (PAD)
 Destination: my_oddrA_ODDR_inst/FF0 (FF)
 Destination Clock: clock90_bufg rising at 2.500ns
 Requirement: 3.000ns
 Data Path Delay: 2.784ns (Levels of Logic = 1)
 Clock Path Delay: -0.168ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Fixed Phase-Shifted Example

A DCM fixed phase-shifted clock example of the Offset In constraint has an initial clock
edge at 0 ns based upon the Period constraint.

• Because the clock is phase-shifted by the DCM, the Timing Report displays the clock
arrival time as the phase-shifted amount.

• If the CLK0 output is phase-shifted by a user-specified amount, the phase-shifted
amount is a percentage of the Period.

In the following example:

• The Period constraint has the initial clock arrival on the rising edge.

• The clock arrival value is at the fixed phase shifted amount.

See the example Timing Report.

X-Ref Target - Figure 6-14

Figure 6-14: Timing Diagram for Phase Shifted Clock in Offset In Constraint

clock_in

clk90

data

3 ns

X11106

10 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=176

Timing Closure User Guide www.xilinx.com 177
UG612 (v 14.3) October 16, 2012

Offset In Before Constraint

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

In the following figure, the Offset requirement is 3 ns before the initial clock edge.

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = IN 3 ns BEFORE clock;

Timing Report Example

Slack: 4.731ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: DataD<9> (PAD)
 Destination: TmpAa_1 (FF)
 Destination Clock: clock1_fixed_bufg rising at 4.500ns
 Requirement: 3.000ns
 Data Path Delay: 2.492ns (Levels of Logic = 2)
 Clock Path Delay: -0.038ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Offset In Constraint Dual-Data Rate Example

A Dual-Data Rate example of the Offset In constraint has an initial clock edge at 0 ns and
half the Period constraint, which correlates to the two clock edges. The Timing Report
displays the clock arrival time for each edge of the clock.

Because the timing analysis tools do not automatically adjust any of the clock phases
during analysis, the constraints must be manually adjusted for each clock edge.

The timing analysis tools offer two options to manage the falling edge clock arrival time.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

Manage Falling Edge Clock Arrival Time Option One

For the first option to manage the falling edge clock arrival time:

1. Create two time groups:

• One time group for rising edge synchronous elements

• One time group for falling edge synchronous elements

X-Ref Target - Figure 6-15

Figure 6-15: Timing Diagram of Fixed Phase Shifted Clock in Offset In Constraint

clock_in

clk90

data

3 ns

X11107

10 ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=177

178 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

2. Create an Offset In constraint for each time group.

The second Offset In constraint has a different requirement.

The falling edge Offset In constraint requirement equals:

(original requirement) minus (one-half the Period constraint)

Therefore, if the original requirement is (3 ns with a Period of 10 ns), the falling edge Offset
In constraint requirement equals (-2 ns).

This compensates for the clock arrival time associated with the falling edge synchronous
elements. The negative value is legal in the constraints language.

Manage Falling Edge Clock Arrival Time Option Two

For the second option to manage the falling edge clock arrival time:

1. Create one time group and one corresponding Offset In constraint with the original
constraint requirement for each clock edge.

2. Add the Rising or Falling keyword if the Period constraint has the High keyword.

The analysis with the Rising or Falling keywords is based upon the active clock edge for
the synchronous element.

• The requirement for the rising clock edge elements is set in the Offset In Rising
constraint.

• The requirement for the falling clock edge elements are set in the Offset In Falling
constraint.

In this example, because the Period constraint has the clock arrival on both the Rising edge
and Falling edge, the clock arrival value is 0 ns and 5 ns. In the following figure, the Offset
requirement is 3 ns before the initial clock edge.

Constraint Syntax Example

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = IN 3 ns BEFORE clock RISING;
OFFSET = IN 3 ns BEFORE clock FALLING;

Timing Report Example for OFFSET = IN 3 ns Before Clock Rising

Slack: 0.101ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: DataA<3> (PAD)
 Destination: TmpAa_3 (FF)
 Destination Clock: clock0_ddr_bufg rising at 0.000ns
 Requirement: 3.000ns

X-Ref Target - Figure 6-16

Figure 6-16: Timing Diagram for Dual Data Rate in Offset In Constraint

Clk

data_rising

data_falling

52

3 ns

t = 3ns 0

10 ns

3 ns

2 ns

X11108

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=178

Timing Closure User Guide www.xilinx.com 179
UG612 (v 14.3) October 16, 2012

Offset In Before Constraint

 Data Path Delay: 2.654ns (Levels of Logic = 2)
 Clock Path Delay: -0.006ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Timing Report Example for OFFSET = IN 3 ns Before Clock Falling

Slack: 0.101ns (requirement - (data path - clock path - clock arrival + uncertainty))
 Source: DataA<3> (PAD)
 Destination: TmpAa_3 (FF)
 Destination Clock: clock0_ddr_bufg falling at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 2.654ns (Levels of Logic = 2)
 Clock Path Delay: -0.006ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=179

180 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Offset In After Constraint
The Offset In After constraint describes the time used by the data external to the FPGA
device.

Offset In subtracts this time from the Period declared for the clock to determine the time
available for the data to propagate from the pad to the setup at the synchronous element.

This time can be visualized as the difference of data arriving at the edge of the device after
the current clock edge arrives at the edge of the device.

This OFFSET = IN 2 ns AFTER clock_pad constraint reads that the data to be
registered in the FPGA device is available on the FPGA input pad, some time period (2ns),
after the reference clock edge is seen by the upstream device. For the purposes of the Offset
constraint syntax, assume no skew on CLK between the chips.

The following equation defines this relationship.

TData + TSetup - TClock <= TPeriod - Toffset_IN_AFTER

where

TSetup = Intrinsic Flip Flop setup time
TClock = Total Clock path delay to the Flip Flop
TData = Total Data path delay from the Flip Flop
TPeriod = Single Cycle PERIOD Requirement
Toffset_IN_AFTER = Overall Setup Requirement

A Period or Frequency constraint is required for Offset In constraints with the After
keyword.

Offset Out Analysis
offsetoutanalysis

The output interface analysis is done under the Offset Out output timing constraint. The
output timing analysis covers the data path from the external clock pad through any logic
and from the synchronous element that is tied to the external data pad. The constraint
defines the maximum time from the time the clock edge arrives at the external pad until
the first data appears at the external data pad.

Detailed Path Analysis
The timing analysis includes internal factors that affect the delays associated with the clock
and data paths. These internal factors include:

• The frequency and phase transformation of the clock

• The clock uncertainties

• The data delay adjustment

Bus Base Analysis
The datasheet section of the Timing Report reports the overall bus skew relative to a
reference pin or fastest bit for source synchronous interfaces.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=180

Timing Closure User Guide www.xilinx.com 181
UG612 (v 14.3) October 16, 2012

Offset Out Analysis

Bus-Based Timing Analysis
Output timing interfaces typically consist of several data signals associated with a single
input clock. To ensure that the entire bus is operating correctly, the bus-based timing
analysis of the interface reports the worst case bus skew across the entire bus in a source
synchronous design.

Bit Analysis

The bus-based timing analysis reports the analysis of each bit of the bus, including:

• Source synchronous elements

• Pad element

• Overall delay

The overall delay includes the delay from the clock input to the output data bit.

• Bus skew

The bus skew is the skew of each bit relative to the reference pin or the smallest data bit
delay.

The detail of the path analysis of the output interface includes the analysis of the clock and
data path of the output interface. The analysis includes the information for a single data
path for single output data path.

Timing Object Table

The Timing Object Table provides a timing summary for the path analysis in Timing
Analyzer, including:

• Output timing of the path

• Contribution of the clock and data components of the path

First Paragraph Contents

The first paragraph contains the path summary for this single path, including:

• Overall performance summary in a slack value with the slack equation.

• Source synchronous element

• Destination pad element

• Transmitting clock network description

• Clock and data path delay details

• Clock uncertainty value

• Clock uncertainty equation

Second Paragraph Contents

The second paragraph contains the path details for the clock and data paths for the output
interface, including:

• Description of all device resources utilized

• Routing delays for both clocking and data paths

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=181

182 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Header Summary Section
For each analysis of the Offset Out constraint, a header summary section includes
information about:

• Constraint syntax

• Number of paths and endpoints analyzed by the constraint

• Timing errors

The header summary section also:

• Verifies that the constraint has covered the expected number of path and endpoints

• Reviews the worst case performance for this constraint.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=182

Timing Closure User Guide www.xilinx.com 183
UG612 (v 14.3) October 16, 2012

Offset Out Constraint

Offset Out Constraint
The Offset Out constraint:

• Defines the Clock-to-Pad timing requirements.

• Is an external clock-to-data specification.

• Takes into account the following when analyzing the clock to out requirements:

• Clock delay

• Clock edge

• DLL or DCM introduced clock phase

Clock to Out = clock_delay + clock_to_out + data_delay + clock_arrival

Clock Arrival Time
Clock arrival time takes into account any clock phase generated by the DLL or DCM
component, or clock edge.

If the Timing Report does not display a clock arrival time, the timing analysis tools did not
analyze a Period constraint for that specific synchronous element.

Clock-to-Pad Requirements
When you create clock-to-pad requirements, incorporate any phase or Period adjustment
factor into the value specified for an Offset Out constraint. For the following example, see
Figure 6-6, Clk90 Clock Phase Between DCM Outputs Schematic.

If the register is clocked by the net from the CLK90 pin of the DCM, which has a Period of
20 ns, adjust the Offset value by 5 ns less than the original constraint.

• Original Constraint

NET "PAD_OUT" OFFSET = OUT 15 AFTER "PADCLKIN";

• Modified Constraint

NET "PAD_OUT" OFFSET = OUT 10 AFTER "PADCLKIN";

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=183

184 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Offset Out After Constraint
The Offset Out After constraint defines the time available for the data to propagate from
the synchronous element to the pad. See the following figure.

This time can be visualized as the data leaving the edge of the device after the current clock
edge arrives at the edge of the device.

Offset Out After Constraint Example

OFFSET = OUT 2 ns AFTER clock_pad

This constraint reads that the data to be registered in the downstream device is available on
the FPGA data output pad 2 ns after the reference clock pulse is seen by the FPGA at the
clock pad.

The following equation defines this relationship.

Q + TData2Out + TClock <= Toffset_OUT_AFTER

where

TQ = Intrinsic Flip Flop Clock to Out
TClock = Total Clock path delay to the Flip Flop
TData2Out = Total Data path delay from the Flip Flop
Toffset_OUT_AFTER = Overall Clock to Out Requirement

The analysis of this constraint involves ensuring that the maximum delay along the
reference path (CLK_SYS to COMP) and the maximum delay along the data path (COMP
to Q_OUT) do not exceed the specified offset.

Offset Rising and Offset Falling Keywords
The Offset Rising and Offset Falling keywords can override the High or Low keyword
defined by the Period constraint. This is useful for DDR design, with a 50% duty cycle,
when the signal is capturing data on the rising and falling clock edges or producing data
on a rising and falling clock edges.

For example, if the Period constraint is High, and the Offset constraint is Falling, the clock
arrival time of the falling edged synchronous elements is set to zero.

Offset Out Set to Rising or Falling Example

TIMEGRP DATA_OUT OFFSET = OUT 10 AFTER CLK FALLING;
TIMEGRP DATA_OUT OFFSET = OUT 10 AFTER CLK RISING;

X-Ref Target - Figure 6-17

Figure 6-17: Circuit Diagram with Calculation Variables for Offset Out After
Constraints

X11109

CLK T_CLK_OUT

T_DATA_OUT

OFFSET-OUT

OUT

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=184

Timing Closure User Guide www.xilinx.com 185
UG612 (v 14.3) October 16, 2012

Offset Out After Constraint

Offset Out Constraint Simple Example

A simple example of the Offset Out constraint has the initial clock edge at 0 ns based upon
the Period constraint. The Timing Report displays the initial clock edge as the clock arrival
time.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

If the Timing Report does not display a clock arrival time, the timing analysis tools did not
recognize a Period constraint for that particular synchronous element.

In the following figure, the Offset requirement is 3 ns. The equation used in timing analysis
is:

Slack = (Requirement - (Clock Arrival + Clock Path + Data Path))

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = OUT 3 ns AFTER clock;

Timing Report Example

Slack: -0.865ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutD_7 (FF)
 Destination: OutD<7> (PAD)
 Source Clock: clock3_std_bufg rising at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 3.405ns (Levels of Logic = 1)
 Clock Path Delay: 0.280ns (Levels of Logic = 3)
 Clock Uncertainty: 0.180ns

Two-Phase Example

In a two-phase (use of both edges) example of the Offset Out constraint, the initial clock
edge correlates to the two edges of the clock.

• The first clock edge is at 0 ns based upon the Period constraint.

• The second clock edge is one-half the Period constraint.

The Timing Report displays the clock arrival time for each edge of the clock. In this
example, the clock arrival for the Period Low constraint is on the falling edge. Therefore
the clock arrival time for the falling edge synchronous elements is zero. The rising edge
synchronous elements are half the Period constraint.

The Timing Report displays the:

X-Ref Target - Figure 6-18

Figure 6-18: Timing Diagram of Simple Offset Out Constraint

clock_in

data

3 ns10 ns

X11110

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=185

186 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

• Data path

• Clock path

• Clock arrival time

In the following figure, the Offset requirement is 3 ns.

TIMESPEC TS_clock=PERIOD clock 10 ns LOW 50%;
OFFSET = IN 3 ns AFTER clock;

Timing Report Example

Slack: -0.865ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutD_7 (FF)
 Destination: OutD<7> (PAD)
 Source Clock: clock3_std_bufg falling at 0.000ns
 Requirement: .3.000ns
 Data Path Delay: 3.405ns (Levels of Logic = 1)
 Clock Path Delay: 0.280ns (Levels of Logic = 3)
 Clock Uncertainty: 0.180ns

Phase-Shifted Example

A DCM phase-shifted, CLK90, example of the Offset Out constraint has the initial clock
edge at 0 ns based upon the Period constraint. Because the clock is phase-shifted by the
DCM, the Timing Report displays the clock arrival time as the phase-shifted amount. If the
CLK90 output is used, the phase-shifted amount is one quarter of the Period. The clock
arrival time corresponds to the phase shifting amount, which is 2.5 ns in this case.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

In the following figure, the Offset requirement is 5 ns.

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = OUT R ns AFTER clock;

X-Ref Target - Figure 6-19

Figure 6-19: Timing Diagram of Two-Phase in Offset Out Constraint

clk_in

data

3 ns10 ns

X11111

X-Ref Target - Figure 6-20

Figure 6-20: Timing Diagram of Phase Shifted Clock in Offset Out Constraint

clock_in

clk90

data

5 ns10 ns

X11112

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=186

Timing Closure User Guide www.xilinx.com 187
UG612 (v 14.3) October 16, 2012

Offset Out After Constraint

Timing Report Example

Slack: -1.365ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutD_7 (FF)
 Destination: OutD<7> (PAD)
 Source Clock: clock3_std_bufg rising at 2.500ns
 Requirement: 5.000ns
 Data Path Delay: 3.405ns (Levels of Logic = 1)
 Clock Path Delay: 0.280ns (Levels of Logic = 3)
 Clock Uncertainty: 0.180ns

Fixed Phase-Shifted Example

A DCM fixed phase-shifted example of the Offset Out constraint has the initial clock edge
at 0 ns, based upon the Period constraint.

• Because the clock is phase-shifted by the DCM, the Timing Report displays the clock
arrival time as the phase-shifted amount.

• If the CLK0 output is phase-shifted by a user-specified amount, the phase-shifted
amount is a percentage of the Period.

In this example:

• The Period constraint has the initial clock arrival on the rising edge.

• The clock arrival value is at the fixed phase-shifted amount.

The clock arrival time corresponds to the phase-shifting amount.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

In the following figure, the Offset requirement is 5 ns.

TIMESPEC TS_clock=PERIOD clock_grp 10 ns HIGH 50%;
OFFSET = OUT 5 ns AFTER clock;

Timing Report Example

Slack: 0.535ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutD_7 (FF)
 Destination: OutD<7> (PAD)
 Source Clock: clock3_std_bufg rising at 0.600ns
 Requirement: 5.000ns
 Data Path Delay: 3.405ns (Levels of Logic = 1)
 Clock Path Delay: 0.280ns (Levels of Logic = 3)

X-Ref Target - Figure 6-21

Figure 6-21: Timing Diagram of Fixed Phase Shifted Clock in Offset Out Constraint

clock_in

clk0

data

5 ns10 ns

X11113

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=187

188 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

 Clock Uncertainty: 0.180ns

Offset Out Constraint Dual-Data Rate Example

A dual-data rate example of the Offset Out constraint has the initial clock edge at 0 ns and
one half the Period constraint, which correlates to the two edges of the clock. The Timing
Report displays the clock arrival time for each edge of the clock.

Because the timing analysis tools do not automatically adjust any of the clock phases
during analysis, the constraints must be manually adjusted for each clock edge.

The timing analysis tools offer two options to manage the falling edge clock arrival time.

The Timing Report displays the:

• Data path

• Clock path

• Clock arrival time

Manage Falling Edge Clock Arrival Time Option One

For the first option to manage the falling edge clock arrival time:

1. Create two time groups:

• One time group for rising edge synchronous elements

• One time group for falling edge synchronous elements

2. Create an Offset In constraint for each time group.

The second Offset In constraint has a different requirement.

The falling edge Offset In constraint requirement equals:

(original requirement) minus (one-half the Period constraint)

Therefore, if the original requirement is (3 ns with a Period of 10 ns), the falling edge Offset
In constraint requirement equals (-2 ns).

This compensates for the clock arrival time associated with the falling edge synchronous
elements. The negative value is legal in the constraints language..

Manage Falling Edge Clock Arrival Time Option Two

For the second option to manage the falling edge clock arrival time:

1. Create one time group and one corresponding Offset In constraint with the original
constraint requirement for each clock edge.

2. Add the Falling keyword for the falling edge elements and the Rising keyword for the
rising edge elements

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=188

Timing Closure User Guide www.xilinx.com 189
UG612 (v 14.3) October 16, 2012

Offset Out After Constraint

In the following figure, the Offset requirement is 3 ns.

Timing Report Example of OFFSET = OUT 3 ns After Clock Rising

Slack: -0.783ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutA_4 (FF)
 Destination: OutA<4> (PAD)
 Source Clock: clock0_ddr_bufg rising at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 3.372ns (Levels of Logic = 1)
 Clock Path Delay: 0.172ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

Timing Report Example of OFFSET = OUT 8 ns After Clock Falling

Slack: -0.783ns (requirement - (clock arrival + clock path + data path + uncertainty))
 Source: OutA_4 (FF)
 Destination: OutA<4> (PAD)
 Source Clock: clock0_ddr_bufg falling at 0.000ns
 Requirement: 3.000ns
 Data Path Delay: 3.372ns (Levels of Logic = 1)
 Clock Path Delay: 0.172ns (Levels of Logic = 3)
 Clock Uncertainty: 0.239ns

X-Ref Target - Figure 6-22

Figure 6-22: Timing Diagram of Dual Data Rate in Offset Out Constraint

CLK

DATA_RISING

DATA_FALLING

8 ns

83

3 ns

3 ns

t = 0 ns

10 ns

X11114

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=189

190 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Offset Out Before Constraint
The Offset Out Before constraint defines the time used by the data external to the FPGA.

Offset subtracts this time from the clock Period to determine the time available for the data
to propagate from the synchronous element to the pad.

This time can be visualized as the data leaving the edge of the device before the next clock
edge arrives at the edge of the device.

This OFFSET = OUT 2 ns BEFORE clock_pad constraint reads that the Data to be
registered in the Downstream Device is available on the FPGA output Pad, some time
period, BEFORE the clock pulse is seen by the Downstream Device. For the purposes of the
Offset constraint syntax, assume no skew on CLK between the chips.

The following equation defines this relationship.

TQ + TData2Out + TClock <= TPeriod - Toffset_OUT_BEFORE

where

TQ = Intrinsic Flip Flop Clock to Out
TClock = Total Clock path delay to the Flip Flop
TData2Out = Total Data path delay from the Flip Flop
TPeriod = Single Cycle PERIOD Requirement
Toffset_OUT_BEFORE = Overall Clock to Out Requirement

The analysis of the Offset Out constraint involves ensuring that the maximum delay along
the reference path (CLK_SYS to COMP) and the maximum delay along the data path
(COMP to Q_OUT) do not exceed the clock period minus the specified offset.

A Period or FREQUENCY is required for Offset Out constraints with the BEFORE
keyword.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=190

Timing Closure User Guide www.xilinx.com 191
UG612 (v 14.3) October 16, 2012

Clock Skew

Clock Skew
Clock skew analysis is included in both a setup and hold analysis. Clock skew is calculated
based upon:

(clock path delay to the destination synchronous element) minus (clock path delay to
the source synchronous element)

Causes of Large Clock Skew
In most designs with a large clock skew, the skew can be attributed to one of the following:

• One or both clocks use local routing.

• One or both clocks are gated.

• DCM drives one clock, but not the other clock.

Difference Between Clock Skew and Phase
Clock skew is not the same as Phase. Phase is the difference in the clock arrival times,
indicated by the source clock arrival time and the destination clock arrival time in the
Timing Report. Clock arrival times are based upon the Phase keyword in the Period
constraint. Clock skew is not included in the clock arrival times.

In the rising-to-rising setup or hold analysis shown in the following figure, the positive
clock skew greatly increases the chance of a hold violation and helps the setup calculation.

During setup analysis, positive clock skew is truncated to zero for Virtex-4 devices and
older. Virtex-5 devices and newer utilize the positive and negative clock skew in the setup
analysis. Positive clock skew is used during the hold analysis for this path.

In the rising-to-falling setup or hold analysis shown in the following figure, the positive
clock skew is less, but the Tho window is smaller and minimizes the chance for a hold
violation.

A two-phase clock:

• Is less likely to have a hold violation.

• Can handle more positive clock skew than a single-phase clock path.
X-Ref Target - Figure 6-24

X-Ref Target - Figure 6-23

Figure 6-23: Rising to Rising Setup/Hold Analysis

Figure 6-24: Rising to Falling Setup/Hold Analysis

CLK

CLK
Tsu

Tho

S

D

X11115

CLK

CLK

Tsu
Tho

S

D

X11116

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=191

192 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

During hold analysis, negative clock skew is truncated to zero for Virtex-4 devices and
older. Virtex-5 devices and newer utilize the negative and positive clock skew in the hold
analysis. Negative clock skew is used during the setup analysis for this path.

During analysis of setup and hold, the negative clock skew and positive clock skew,
respectively, decrease the margin on the Period constraint requirement. See the following
figure.

To determine how the timing analysis tools calculated the total clock skew for a path, use
the Analyze -> Against User Specified Paths command in Timing Analyzer. Select the
source and destination of the path in question, and analyze from the clock source to the
two elements in the path.

In the above figure:

• Tsu and Tho represent the active edge the setup/hold violation calculation is done
one, respectively.

• The dashed lines show the positive and negative clock skew being truncated to zero
for setup and hold checks, respectively.

The report displays the clock path to the source and the clock path to the destination.
Review the paths to determine if the design has one of the causes of clock skew that were
previously mentioned. The timing analysis tools subtract the clock path delays to produce
the clock skew, as reported in the Timing Report.

The DLY file, produced by Reportgen (after PAR), can also be used to determine the values
used to calculate the clock skew value that was reported.

When calculating the clock path delay, the timing analysis tool traces the clock path to a
common driver. In the following figure, the common driver of the clock path is at the
DCM.

If the tools can not find a common driver, the analysis starts at the clock pads. In clock path
delay, the timing analysis tool traces the clock path to a common driver.

In Figure 3-16, Hold Violation (Clock Skew > Data Path):

• The clock path delay from the DCM to the destination element is (0.860 + 0.860 +
0.639) = 2.359

• The clock path delay from the DCM to the source element is (0.852 + 0.860 + 0.639) =
2.351.

• The total clock skew is 2.359 - 2.351 = 0.008 ns
X-Ref Target - Figure 6-26

X-Ref Target - Figure 6-25

Figure 6-25: Positive and Negative Clock Skew

Source
Clock

Positive
Clock Skew

Negative
Clock Skew

Tsu

Tsu

Tho

Tho

X11117

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=192

Timing Closure User Guide www.xilinx.com 193
UG612 (v 14.3) October 16, 2012

Clock Skew

Figure 6-27: Maximum Skew Example

In the preceding diagram:

• For ta(2), 2 ns is the maximum delay for the Register A clock.

• For tb(4), 4 ns is the maximum delay for the Register B clock.

• Maximum Skew defines the maximum of tb minus the maximum of ta, that is, 4-2=2.

In some cases, relative minimum delays are used on a net for setup and hold timing
analysis. When the Maximum Skew constraint is applied to network resources which use
relative minimum delays, the Maximum Skew constraint takes relative minimum delays
into account in the calculation of skew.

Overusing the Maximum Skew constraint, or too strict of a requirement (value), can cause
long PAR runtimes.

Figure 6-26: Clock Skew Example

X-Ref Target - Figure 6-27

X11118

DCM

FF_0F

CLKIN
CLK0

CLK90

Tdcmino = -4.197

Tiopi = 0.825
FF_90

net = 0.639clk20_90g

clk20

Tgi0o = 0.860

clk20
net = 0.639

net = 0.860

net = 0.852
net = 0.798

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=193

194 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

Clock Uncertainty
In addition to the Clock Skew affecting the margin on the Period constraint requirement,
clock uncertainty also affects it. Clock uncertainty increases timing accuracy by accounting
for system, board level, and DCM clock jitter.

The System Jitter constraint and the Input Jitter keyword on the Period constraint tell the
timing analysis tools that the design has external jitter affecting the timing of this design.
See the following figure.

The following are also included in the clock uncertainty during the analysis for Virtex-4
devices and newer:

• DCM/PLL/MMCM Jitter

• DCM/PLL/MMCM Phase Error

• DCM/PLL/MMCM Duty Cycle Distortion (DCD) or Jitter

The individual components that make up clock uncertainty are also reported. The timing
analysis tools calculate the clock uncertainty for the source and destination of a data path
and combine them together to form the total clock uncertainty.

DCM Clock Uncertainty Equation
Following is the equation for DCM Clock Uncertainty:

Clock Uncertainty = [√(INPUT_JITTER² + SYSTEM_JITTER²) +
DCM_Discrete_Jitter]/2 + DCM_Phase_Error

DCM Discrete Jitter and DCM Phase Error are provided in the speed files for Virtex-4
devices and newer. However, DCM Discrete Jitter and DCM Phase Error are not available
in speedprint.

Clock Uncertainty Examples
• INPUT_JITTER: 200ps² = 40000ps

• SYSTEM_JITTER: 150ps² = 22500ps

• DCM/PLL/MMCM Discrete Jitter: 120ps

• DCM/PLL/MMCM Phase Error: 0ps

• Clock Uncertainty: 185ps

X-Ref Target - Figure 6-28

Figure 6-28: Input Jitter on Clock Signal

Input Jitter 1 ns

Period = 10 ns

X11119

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=194

Timing Closure User Guide www.xilinx.com 195
UG612 (v 14.3) October 16, 2012

Clock Uncertainty

Period Constraint with Input Jitter Example

Following is an example of a Period constraint with the Input Jitter keyword:

TIMESPEC "TS_Clk0" = PERIOD "clk0" 4 ns HIGH 60% INPUT_JITTER 200 ps PRIORITY 1;

The System Jitter constraint:

• Defines jitter that impacts the system.

• Can represent the jitter from:

• Power noise

• Board noise

• Any extra jitter of the overall system

The System Jitter value can depend upon the design condition, such as:

• The number of synchronous elements changing at the same time.

• The number of inputs and outputs changing at the same time.

The System Jitter value can be based upon the difference between (1) the input clock edge
noise (or jitter); and (2) the power noise. This difference can be measured on the board by
the differences between (1) the clock edges; and (2) the power plane and ground plane
movements.

A user-specified System Jitter constraint overrides the default System Jitter value (if any)
for a given device family.

Not all device families have a default System Jitter value. In that case, the user must specify
a value.

Xilinx recommends a System Jitter value of 300ps. This value:

• Applies to all clocks in the design.

• Is combined with the Input Jitter value for a given clocking network topology.

System Jitter Constraint in the UCF Example

The following is an example of the System Jitter constraint in the UCF:

SYSTEM_JITTER = 300 ps;

Clock jitter consists of both random and discrete jitter components. Because the Input Jitter
and System Jitter are random jitter sources, and typically follow a Gaussian distribution,
the combination of the two is added in a quadratic manner to represent the worst case
combination.

Because the DCM/PLL/MMCM Jitter is a discrete jitter value, it is added directly to the
clock uncertainty.

In the analysis of clock uncertainty all jitter components, both random and discrete, are
specified as peak-peak values. Peak-peak values represent the total +/- range by which the
arrival time of a clock signal varies in the presence of jitter.

In a worst case analysis, only the delay variation that causes a decrease in timing slack is
used. For this reason, only the peak jitter value, or one-half the peak-to-peak value, is used
for each setup and hold timing check.

The phase error component of clock uncertainty is a value representing the phase variation
between two clock signals. Because this value is discrete, and represents the actual phase

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=195

196 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 6: Timing Analysis

difference between the DCM/PLL/MMCM clocks, it is added directly to the clock
uncertainty value.

PLL/MMCM Clock Uncertainty Equation

Clock Uncertainty = [√(INPUT_JITTER² + SYSTEM_JITTER² + PLL/
MMCM_Discrete_Jitter²)]/2 + PLL/MMCM Phase_Error

PLL/MMCM Discrete Jitter and PLL/MMCM Phase Error are provided in the speed files
for Virtex-5 devices.

In the analysis of clock uncertainty all jitter components, both random and discrete, are
specified as peak-peak values. Peak-peak values represent the total +/- range by which the
arrival time of a clock signal varies in the presence of jitter. In a worst case analysis, only
the delay variation that causes a decrease in timing slack is used.

Only the peak jitter value, or one-half the peak-to-peak value, is used for each setup and
hold timing check.

The phase error component of clock uncertainty is a value representing the phase variation
between two clock signals. Because this value is discrete, and represents the actual phase
difference between the PLL/MMCM clocks, it is added directly to the clock uncertainty
value.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=196

Timing Closure User Guide www.xilinx.com 197
UG612 (v 14.3) October 16, 2012

Chapter 7

Achieving Timing Closure

Timing closure is a major design challenge.

• The high performance requirements of many designs, and the size of the target
devices, often make it difficult to achieve timing closure.

• Designs that formerly fit on ASIC devices, or that ran at high clock frequencies on
those devices, are now finding their way onto Xilinx® FPGA devices.

You must have a proven methodology for achieving your performance objectives. This
chapter addresses timing closure issues by providing a recommended methodology with
examples and use cases.

The guidelines in this chapter are a road map for improving performance and meeting
your timing objectives.

When Timing Closure Is Achieved
Timing closure is achieved when all timing constraints for a design are met under all legal
operating conditions:

• Process

• Voltage

• Temperature

Timing Score

Timing closure is achieved when the design is fully constrained and the timing score is
zero. The timing score:

• Is the total value representing the timing analysis for all constraints, and the amount
by which the constraints are failing

• Is the sum in picoseconds of all timing constraints that have not been met

• Shows the total amount of error (in picoseconds) for all timing constraints in the
design

• Can be viewed in the PAR Report at each phase of the router algorithm.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=197

198 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

PAR Report Example One

Three timing score values are reported:

• Setup

• Hold

• Component switching limits

Each timing score value is analyzed in more detail later in this chapter.

The final timing score is displayed in the PAR Report and the TRCE Report.

PAR Report Example Two

TRCE Report Example

Timing Summary:

Timing errors: 119 Score: 2124 (Setup[/Max: 2124, Hold: 0)
Constraints cover 23109382 paths, 24 nets, and 339654 connections

Phase 1: 373040 unrouted; REAL time: 2 mins 2 secs

Phase 2: 324361 unrouted; REAL time: 2 mins 24 secs

Phase 3: 133339 unrouted; REAL time: 6 mins 1 secs

Phase 4: 134608 unrouted; (Setup: 23596, Hold: 3309336, Component Switching Limit: 0)

Phase 5: 0 unrouted; (Setup: 46800, Hold: 319725, Component Switching Limit: 0)

Phase 6: 0 unrouted; (Setup: 29212, Hold: 319991, Component Switching Limit: 0)

Phase 7: 0 unrouted; (Setup: 29232, Hold: 319991, Component Switching Limit: 0)

Phase 8: 0 unrouted; (Setup: 29232, Hold: 319991, Component Switching Limit: 0)

Phase 9: 0 unrouted; (Setup: 27588, Hold: 320002, Component Switching Limit: 0)

Phase 1: 235879 unrouted; REAL time: 54 secs
Phase 2: 206616 unrouted; REAL time: 59 secs
Phase 3: 76322 unrouted; REAL time: 3 mins 11 secs
Phase 4: 76327 unrouted; (Setup:2126, Hold:23834, Component Switching Limit:0)
REAL time: 3 mins 44 secs Intermediate status: 4 unrouted; REAL time: 33
mins 16 secs Updating file: crypto_subsystem_wrap.ncd with current fully routed
design.
Phase 5: 0 unrouted; (Setup:177520, Hold:17912, Component Switching Limit:0)
REAL time: 33 mins 47 secs Intermediate status: 917 unrouted; REAL time:
1 hrs 4 mins 11 secs
Phase 6: 0 unrouted; (Setup:9720, Hold:17991, Component Switching Limit:0)
REAL time: 1 hrs 5 mins 17 secs
Phase 7: 0 unrouted; (Setup:9720, Hold:17991, Component Switching Limit:0)
REAL time: 1 hrs 5 mins 17 secs
Phase 8: 0 unrouted; (Setup:9720, Hold:17991, Component Switching Limit:0)
REAL time: 1 hrs 5 mins 17 secs
Phase 9: 0 unrouted; (Setup:4053, Hold:0, Component Switching Limit:0) REAL
time: 1 hrs 5 mins 37 secs
Timing Score: 2124 (Setup: 2124, Hold: 0 Component Switching Limit: 0)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=198

Timing Closure User Guide www.xilinx.com 199
UG612 (v 14.3) October 16, 2012

When Timing Closure Is Achieved

Prerequisites to Achieving Timing Closure
To achieve timing closure, you must understand the following before starting your design:

• The performance requirements of the system

• The features of the target device

Knowing these requirements and features enables you to use the correct coding methods
to achieve optimal performance.

Device Requirements
The requirements of the target device depend on:

• The system, and

• The upstream and downstream devices.

Once you know the interfaces to the target device, you can outline the internal
requirements.

How to meet these requirements depends on the target device and its available features.
You must understand:

• Device clocking structure

• RAM and DSP blocks

• Any hard macros

For more information on each family, see the device data sheet cited in Appendix A,
Additional Resources.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=199

200 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Timing Closure Flowchart
The following figure outlines the steps to follow in order to achieve timing closure. Each
step is addressed individually in the remainder of this chapter.

Step 8: Run TRCE and Analyze Timing Results and Report is the primary step. Many use
cases and scenarios are presented with proposed debugging steps and resolutions.

X-Ref Target - Figure 7-1

Figure 7-1: Timing Closure Flowchart

Specify Good Pin Constraints

Employ Proper HDL Coding Techniques &

Drive your Synthesis Tool

Apply Global and Path-Specific Timing
Constraints to Implementation Tools

Meet
Timing?

Implement

Run TRCE and Analyse Timing Report and
Results

Yes

No

Timing Score
< 100k Run

SmartXplorer

Meet
Timing?

Yes No

Done

Done

1

2

3

4

5

8

Analyze Synthesis, NGDBuild, MAP and PAR
report files

7

6

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=200

Timing Closure User Guide www.xilinx.com 201
UG612 (v 14.3) October 16, 2012

Steps to Achieving Timing Closure

Steps to Achieving Timing Closure
• Step 1: Specify Good Pin Constraints

• Step 2: Use Proper Coding Techniques and Architectural Resources

• Step 3: Drive the Synthesis Tool

• Step 4: Apply Global and Path Type Timing Constraints

• Step 5: Run Implementation

• Step 6: Run SmartXplorer

• Step 7: Review Reports

• Step 8: Run TRCE and Analyze Timing Results and Report

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=201

202 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Step 1: Specify Good Pin Constraints
Pin constraints are often required early in the design cycle to allow board development to
begin.

Create pin constraints that take advantage of:

• FPGA architecture

• Design flow

• Board requirements.

To create these constraints, use your knowledge of:

• The FPGA fabric

• Design input to outputs

• Data flow through your design

• Your design in general

Designs with Large Components
Designs with large components, such as block RAM components, drive the data flow
through the device. Having a good knowledge of the number of clocks, and how they
relate to each other, also impacts pin placement.

The clock structure can dictate overall design performance. For that reason, it is of utmost
importance. The pin placement can also be driven by the interfaces to the upstream and
downstream devices, such as memory interface locations on the board.

Pin Location
Pay close attention to pin location. Evaluate I/O location constraints in the PlanAhead™
design analysis tool to ensure that these constraints are not forcing critical logic to span the
device. If so, you may need to insert pipeline stages.

Partial Reconfiguration, Partitioning and Floorplanning
As devices and designs increase in size, partial reconfiguration, partitioning and
floorplanning have become more important. Good pin location allows the design to be
well floorplanned and to use the device structure most efficiently.

Pin Placement Strategy
Use the PlanAhead tool for your pin placement strategy. Before using this tool, see the
tutorials on the Xilinx support web site.

You can generate I/O package pin assignments:

• Manually on a pin-by-pin drag and drop basis

• By semi-automatically dragging and dropping groups of ports

• With a fully automatic pin placement algorithm

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=202

Timing Closure User Guide www.xilinx.com 203
UG612 (v 14.3) October 16, 2012

Step 1: Specify Good Pin Constraints

This process can begin with:

• A synthesized EDIF netlist

• An un-synthesized HDL netlist

• A comma separated value (CSV) file

• A completely blank project in which the design ports are created inside the tool for
export

Pin placement can affect the timing of the final design. It is easier to write code that meets
timing for pins in a single bank, or for pins in adjacent banks, than it is to write code for
pins in banks on opposite sides of the chip.

Embedded Elements
When pin planning, consider embedded elements such as which RTL will communicate
with the following components:

• MGT

• block Ram

• DSP

Use the following information when writing the RTL code:

• Which RTL hierarchy will communicate with these components

• Which hierarchy will be pulled apart by a given pinout

The pin assignment suggestions in the following steps can help increase productivity for
optimal I/O placement.

Table 7-1: Ease of Writing Code That Meets Timing

Easier Harder

• Pins in a single bank
• Pins in adjacent banks

• Pins in banks on opposite sides of the chip

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=203

204 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Step 2: Use Proper Coding Techniques and Architectural
Resources

Each Xilinx device family has specific features and resources, although many are common
across platforms. The design must use these resources optimally and efficiently.

For more information on individual devices, see the device user guide cited in
Appendix A, Additional Resources.

Device Architectural Resources
Following are examples of available device architectural resources:

• Shift Register LUT (SRL16/ SRLC16)

• F5, F6, F7, and F8 multiplexers

• Carry logic

• Multipliers (DSP48)

• Global clock buffers (such as BUFG, BUFGCE, BUFGMUX, BUFGDLL, and BUFPLL)

• SelectIO™ standard (single-ended, differential)

• I/O registers (SDR, DDR)

• Memories (BRAM, DRAM)

• DCM, PMCD, PLL, MMCM

• Local clock buffers (BUFIO, BUFR)

• PPCs, MicroBlaze

• MGTs

You must understand the particular device you are targeting and the specific resources
available within that device. Using these resources necessarily impacts the performance of
the design and tools.

Coding Guidelines
Xilinx recommends that you:

• Implement synchronous design techniques

• Use Xilinx specific coding

• Use cores

The XST User Guide for Virtex®-6, Spartan®-6, and 7 Series Devices (UG687) contains many
example of how to code efficiently to target available device features. For a link to this
guide, see Appendix A, Additional Resources.

Follow these coding guidelines to ensure an optimal netlist:

• Avoid high level loop constructs.

• Use case statements for large decoding.

• Avoid nested if-then-else statements.

• Do not create internally generated clocks except though DCM or PLL.

• Minimize the number of clocks in the design.

• Make sure that internally created resets are synchronous.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=204

Timing Closure User Guide www.xilinx.com 205
UG612 (v 14.3) October 16, 2012

Step 2: Use Proper Coding Techniques and Architectural Resources

• Use only one edge of the clock.

• Use edge-triggered flip-flops (avoid latches).

• Cross-clock domains via synchronization circuits.

• Register top-level inputs and outputs for fastest performance and increased
pin-locking capability.

• Use hierarchy to separate functionality and clock domains.

• Employ pipelining for critical paths.

• Comment your code to highlight Multi-Cycle paths and critical paths.

Clocking Guidelines
The clocking structure varies across the range of devices, which is highlighted in the
Spartan®-6 family. To achieve timing closure, use this clocking structure to take full
advantage of all features.

Xilinx recommends that you follow these clocking guidelines.

Minimize Clocking Components

Use a minimal number of clocking components.

Evaluate Connectivity of Clocking Components

Evaluate connectivity of all clocking components in the PlanAhead tool to ensure that
there are no duplicate structures that may cause unnecessary use of clock components (for
example, one BUFG driving another BUFG).

Do Not Use CLOCK_DEDICATED_ROUTE

Do not use the CLOCK_DEDICATED_ROUTE constraint in a production design. Use
CLOCK_DEDICATED_ROUTE only as a temporary workaround to a clock failure in MAP
in order to produce an NCD file to debug the design in FPGA Editor. The
CLOCK_DEDICATED_ROUTE constraint applies to the INSTANCE PIN or NET.

For more information, see Xilinx Answer Record 30355.

Do Not Use Gated Clocks

Do not use gated clocks.

Resets and Clock Enables Guidelines
Xilinx recommends that you follow these guidelines for resets and clock enables.

Avoid Asynchronous Resets

Avoid asynchronous resets. Asynchronous resets:

• Prevent control set reduction in synthesis

• Prevent certain power optimizations from occurring

• Prevent logic optimization into SR path for improved timing

• Are more difficult to time

Send Feedback

http://www.xilinx.com/support/answers/30355.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=205

206 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Minimize Resets and Clock Enables

Minimize the use of resets and clock enables when possible.

Consequences of a Large Number of Resets and Clock Enables

A large number of resets and clock enables results in a large number of control sets. A large
number of control sets in a design in which each control set has a small number of loads
impacts the packing of registers into a slice. This can lead to fitting and timing issues in all
device families.

Xilinx recommends combining or simplifying the resets and clock enable signals. These
signals share routing resources, and can prevent the placer from using locations that might
help the performance of the design and timing paths.

Use Active High Resets for Spartan-6 Devices

For Spartan®-6 devices, use active-High resets when possible. Because there is no local
inversion in the slice for resets in Spartan-6 devices, the inversion must be done in a LUT.

For designs in which hierarchy is maintained in synthesis, or in which partitions are used,
this can lead to multiple LUTs. This can have implications for timing due to an extra LUT
for the inversion.

Run MAP with -detail Switch

Run MAP with the -detail switch to get a complete listing of control sets and the loading on
each set in the MAP report (*mrp). Verify that a large number of control sets are not being
caused by fanout optimization of a high fanout reset/ce.

When you generate a detailed list of control sets in your MAP report, look for reset/ce nets
with very similar names but with rep or fast appended to the name. This can indicate
that this net was replicated. You can also verify this in the Synthesis Report.

Minimize Resets

Minimize resets. Resets may cause suboptimal mapping of shift registers into SRLs.

Block RAM and DSP Guidelines
Xilinx recommends that you follow these block RAM and DSP guidelines.

Use Dedicated Registers

Verify that all block RAM and DSP48 blocks use dedicated registers when possible to
minimize setup and clk2out time. Use a PlanAhead tool DRC check to identify this
situation.

Use the PlanAhead tool schematic view to identify why the registers are not being merged
with the block RAM or DSP components.

Infer Block RAM and DSP

Infer block RAM and DSP when possible to provide flexibility and optimal usage.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=206

Timing Closure User Guide www.xilinx.com 207
UG612 (v 14.3) October 16, 2012

Step 2: Use Proper Coding Techniques and Architectural Resources

Follow XST Coding Styles

Follow XST coding styles to ensure proper inferencing.

For more information, see the XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
(UG687), cited in Appendix A, Additional Resources.

Regenerate or Resynthesize All Block RAM Components

Regenerate or resynthesize all block RAM components, or both, using the latest version of
ISE® Design Suite. Block RAM specifications continue to change through releases. The best
way to ensure that you have the latest recommended configuration of block RAM
components is to use the latest core or synthesis tool result.

Examine MAP File

Examine the MAP (.mrp) file for any errors or warnings concerning block RAM
components.

Verify Block RAM Behavior

To verify proper block RAM behavior, run extensive functional and timing simulations.

• When using the BRAMB8BWER in SDP mode (256x36), if using it synchronously with
the same clock connected to the read/write port, set WRITE_MODE on both ports to
READ_FIRST.

• Starting after Release 12.2, when using the RAM in this mode with different clocks on
read/write ports, ISE® Design Suite allows the use of WRITE_FIRST mode. This
avoids address overlap, and is the preferred setting.

• For Release 12.2 and before, Xilinx recommends using a RAMB16BWER (512x36)
mode in WRITE_FIRST configuration to avoid address overlap.

• For Release 11.5 and after, when using the BRAMB8BWER in SDP mode (256x36),
where one port is 36-bits and the other is 18-bits or less, that mode is no longer
allowed. For this mode, Xilinx recommends:

• Use a RAMB16BWER (easier but uses more memory space than potentially
needed), or

• Construct the proper logic to allow the block RAM to be configured with 36-bits
on both ports (the only supported widths for RAMB8 in SDP mode).

• In general, Xilinx recommends registering the input and outputs of the design and of
any given module.

• Determine if Distributed or block RAM memory is ideal.

• Smaller memories offer higher performance with distributed RAM.

• Larger memory arrays are better in block RAM.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=207

208 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Step 3: Drive the Synthesis Tool
It is important to drive the synthesis tools and apply period and input and output
constraints to drive optimization results from synthesis. Multi-Cycle and false paths can
also be applied.

The synthesis tools work on paths using the logic delay as guidance. Without any
constraints, the tools treat the longest path (most logic delay) as the most critical.

For instance, in a two clock system, clka with 10 ns of logic delays and clkb with 20 ns of
logic delays, clkb is seen as the critical path. Because the tools have no knowledge of clock
requirement without constraints guiding the synthesis tools, clkb may not actually be the
most critical path.

Apply a Period constraint to the tool specifying that clka has a requirement of 5 ns and
clkb has a requirement of 25 ns. The tools now consider clka as the critical path.

For more information on constraining synthesis, see Chapter 6, Timing Analysis.

Pipelining the Design
Pipelining the design:

• Increases the efficiency of the synthesis tool.

• Is optimal for interface bandwidth

• Is not ideal for latency.

While latency can be important, it is usually the latency in a different order of magnitude
than the one caused by pipelining.

Because FPGA devices have many registers, re-timing and the innovative use of arithmetic
functions can yield greatly enhanced performance. If you must balance the latency among
different paths in the system, use SRLs to compensate efficiently for delay differences.
Using SRLs can negatively affect the control sets and packing of other logic around them.

Synthesis Options That Impact Timing
The following synthesis options impact the timing of a design.

For more information on each option, see the XST User Guide for Virtex-6, Spartan-6, and 7
Series Devices (UG687), cited in Appendix A, Additional Resources.

• Keep Hierarchy

• LUT Combining

• RAM Extraction and ROM Extraction

• Use DSP Block

• Global Max Fanout

• Shift Register Extraction and Shift Register Minimum Size

• Register Balancing

• Netlist Hierarchy

• Read Cores

• Asynchronous to Synchronous

• Resource Sharing

• Equivalent Register Removal

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=208

Timing Closure User Guide www.xilinx.com 209
UG612 (v 14.3) October 16, 2012

Step 3: Drive the Synthesis Tool

• Pack I/O Registers Into IOB Components

• State Machine Encoding

• Shift Register Inferencing (Spartan-6 and Virtex-6 Devices)

Keep Hierarchy

Maintaining hierarchy:

• Enables easier debugging in static timing analysis

• Improves your opportunities to floorplan and to implement incremental or modular
design techniques

However, maintaining hierarchy can have a negative impact on the results. When
hierarchy is maintained, the synthesis tool is limited to optimizing within the boundary of
the hierarchy. For some designs that do not have a well-defined hierarchy, it is necessary to
allow the tools to optimize across the hierarchy.

Check the Synthesis Report to see if the global Keep Hierarchy (KEEP_HIERARCHY)
constraint is set to soft or yes, or if Keep Hierarchy (KEEP_HIERARCHY) or Keep (KEEP)
constraints have been set on specific instances. If so, run with these constraints removed.
These constraints could be impacting optimizations on critical paths if the constraints are
not applied at the proper boundaries.

LUT Combining

The LUT Combining (LC) constraint maps two small LUTs into a single LUT, taking
advantage of the dual outputs on the LUT. LUT Combining can cause problems with
placement resulting in timing issues. When LUTs are combined, the placer tool is restricted
with a single LUT trying to satisfy multiple timing paths. While this can lead to timing
issues, this option is useful when trying to reduce the design utilization.

LUT Combining is set to auto by default in XST. Review the MAP Report to see if this
option is having a large impact by the number of LUTs using both the O5 and O6 outputs.

Consider disabling this option in XST to improve performance.

LUT Combining can provide an area savings. Consider disabling LUT Combining in XST,
and enabling it MAP to ensure the most accurate view of timing.

RAM Extraction and ROM Extraction

To optimally infer block RAM or distributed RAM components:

• Follow the coding techniques outlined in the XST User Guide for Virtex-6, Spartan-6,
and 7 Series Devices (UG687), cited in Appendix A, Additional Resources.

• Use the extraction constraints.

Use the pipelining registers available in the block RAM resource in the devices for optimal
timing performance. Find a good balance between block RAM and distributed RAM
components.

Use DSP Block

As with RAM extraction, use the USE_DSP48 (Use DSP48) constraint to instruct the tools to
infer DSP blocks. For optimal timing performance, use the pipelining registers in the
device DSP resource.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=209

210 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

This constraint has different names in different devices.

Global Max Fanout

Reducing the fanout of control signals:

• Can greatly improve the ability to meet timing.

• Is not necessary for global logic.

• Can allow the tools to place the design more efficiently.

• Increases the number of logic levels in the design.

Xilinx recommends using only enough registers to improve the placement and
performance.

• Do not use as a global setting.

• Attach it to individual paths.

The synthesis tools replicate with no knowledge of the destination locations. Because this
also increases the control sets, use it sparingly. The XST report includes a control signal
report that can help understand the nets with high fanout.

If the design has area problems, and the value is very low, increase the value to see the
impact on area.

If there are still high fanout nets after increasing the value:

• Determine if any of the nets are timing critical.

• Apply a Max Fanout (MAX_FANOUT) attribute specifically on the net.

Try reducing this value:

• If the global Max Fanout was not changed, and

• There are many high fanout nets impacting performance.

Shift Register Extraction and Shift Register Minimum Size

Use caution when inserting pipelining in the design. The tools may infer an SRL, thus
removing the pipelining. SRL inference can be controlled with this constraint and set the
minimum shift register size before SRL inference takes place.

Register Balancing

The Register Balancing (REGISTER_BALANCING) constraint enables flip-flop retiming.
The main goal of register balancing is to move flip-flops and latches across logic to increase
clock frequency.

Explore these options to see if they provide a performance advantage. Combining these
options can lead to increased register usage and potentially more LUT usage due to SRL
inferencing. Therefore, if area limited, this may hurt more than it helps.

Table 7-2: Use DSP Block Names

Devices Name

• Virtex-4 Use DSP48

• Virtex-5
• Spartan®-3A DSP

Use DSP Block

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=210

Timing Closure User Guide www.xilinx.com 211
UG612 (v 14.3) October 16, 2012

Step 3: Drive the Synthesis Tool

Netlist Hierarchy

The Netlist Hierarchy (-netlist_hierarchy) constraint:

• Controls the form in which the final NGC netlist is generated.

• Allows you to write the hierarchical netlist even if the optimization was done on a
partially or fully flattened design.

• Is set to as_optimized by default.

In many designs, Netlist Hierarchy is set to rebuilt to make it easier for floorplanning.
Sometimes, however, this can cause worse timing. Explore this option carefully to see
if it impacts timing.

Read Cores

Reading in cores during synthesis insures that XST reads in any IP cores generated by the
CORE Generator™ tool. By reading in the cores, XST can better optimize the logic
connected to these cores.

Asynchronous to Synchronous

If the design has asynchronous resets, use the Asynchronous to Synchronous
(ASYNC_TO_SYNC) switch to convert the asynchronous resets to synchronous resets.
Doing so can impact performance, area, and power. Because this can impact functionality,
verify that the design is functioning correctly after synthesis.

Resource Sharing

Synthesis tools use resource sharing to decrease circuit area, usually resulting in lower
performance. Resource Sharing (RESOURCE_SHARING):

• Minimizes the number of arithmetic operators, resulting in reduced device utilization

• Works with adders, subtractors, adders/subtractors, and multipliers

• Is on by default

An HDL Advisor message informs you when resource sharing has taken place.

Consider disabling resource sharing if the design is unable to meet timing. If the design has
a limited number of LUTs, consider moving some of these arithmetic operators into
DSP48s if available.

Equivalent Register Removal

The Equivalent Register Removal (EQUIVALENT_REGISTER_REMOVAL) constraint:

• Removes equivalent registers if they are described at the Register Transfer Level (RTL)

• Does not remove instantiated flops

• Is on by default

Consider disabling Equivalent Register Removal if:

• The design is trying to describe equivalent registers to minimize fanout, or

• The design is trying to keep certain blocks isolated.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=211

212 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Equivalent Register Removal can be disabled:

• Globally, or

• On specific instances.

It is not always necessary to remove registers, because most designs use more LUTs than
registers, making registers abundant. Review the Synthesis Report to see if registers have
been removed due to Equivalent Register Removal.

Pack I/O Registers Into IOB Components

The decision to move flip-flops into and out of IOB components can also be made by the
MAP process during implementation. A constraint can be applied during synthesis.

Xilinx recommends using IOB flip-flops to improve interface timing. Using the Offset In or
Offset Out constraints drives the placement of the flip-flops into the IOB sites.

State Machine Encoding

Use One-Hot State Encoding when implementing Finite State Machine (FSM) components.
By using One-Hot State Encoding in Xilinx FPGA devices, the next-state decoding logic
can be simplified to logic equations with four inputs or fewer. This can fit into a single LUT,
and maximizes the performance of the state machine.

Many synthesis tools choose One-Hot State Encoding for state machines when targeting a
Xilinx FPGA device.

Shift Register Inferencing (Spartan-6 and Virtex-6 Devices)

The minimum shift register size for inferring LUTs as shift registers (SRLs) is two for XST.
For many designs, this can lead to a large increase in LUTs, which may negatively impact
fitting and performance. Use the Shift Register Minimum Size (SHREG_MIN_SIZE) option
to globally control the default shift register size that XST uses.

Use the Shift Register Extraction (SHREG_EXTRACT) constraint to completely disable the
inference of SRLs. This can be useful when a design is becoming very limited on LUTs and
particularly SLICEMs.

The Shift Register Extraction (SHREG_EXTRACT) constraint can be applied globally or to
a specific instance.

For more information, see the XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices
(UG687), cited in Appendix A, Additional Resources.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=212

Timing Closure User Guide www.xilinx.com 213
UG612 (v 14.3) October 16, 2012

Step 4: Apply Global and Path Type Timing Constraints

Step 4: Apply Global and Path Type Timing Constraints
The implementation tools do not attempt to place and route the design to obtain the best
speed. Instead, they try to meet the performance expectations communicated by the timing
constraints. Timing constraints improve the design performance by helping place logic
closer together resulting in shorter routing resources used. However, the tools do not
optimize the design or change the netlist in any way. This can only improve placement and
routing.

Use timing constraints to define performance objectives. Applying constraints that are
tighter than necessary increases compile time. Unrealistic constraints cause the
implementation tools to stop with non-optimal results.

Caution! Do not use tighter constraints than required. Tighter constraints cause the tool to
work harder than necessary to meet timing, and may give less than optimal performance.

Timing Ignore constraints and Multi-Cycle constraints allow the tools to relax on certain
paths, and concentrate on meeting timing on the most critical paths. Over-constraining a
design is considered later in the chapter.

The FPGA device requirements depend on the downstream and upstream devices which
will dictate the I/O requirements for the FPGA. All of the clocks in the design should be
constrained.

Basic Timing Model
The following figure shows a basic timing model which highlights the impact of these
devices on the FPGA timing.

Isolate Global Constraints
When applying design constraints, first isolate the global constraints. These are the first to
be constrained. Run the tools with global constraints only, then apply path specific
constraints as necessary. Cover all paths in the design by constraints.

Global Timing Constraints
From the basic timing model isolate the inputs, outputs, and clocked logic within the
design. Once you understand these paths, you can proceed with the basic global timing
constraints that will apply to your design.

For more information, see Chapter 2, Timing Constraint Methodology.

X-Ref Target - Figure 7-2

Figure 7-2: Basic Timing Model

Transmitting Device
Upstream Device

Device Datasheet gives

clock to out

FPGA

Produce Constraints

Receiving Device
Downstream Device

Device Datasheet gives

setup & hold

Clock

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=213

214 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Example Scenarios
The following example scenarios show how the above parameters correlate while
applying constraints.

FPGA Interfaced with a SDRAM (Example Scenario One)

In Example Scenario One, the FPGA device is being interfaced with a SDRAM on the
board. The requirements of the SDRAM are:

• Minimum setup time: 2ns

• Maximum Clock to Out: 6ns

You must include the board trace delays. In this case, they are:

• Setup path = 500ps

• Clock to Out path = 300ps

In this case, the SDRAM is the downstream device as well as the upstream device.

• OFFSET OUT is 2.5ns

• 2ns is the minimum setup time of SDRAM

• 0.5ns is because of board delay

• OFFSET IN is 6.3ns

• 6ns is Clock to out for SDRAM

• 0.3ns is because of board delay

This example does not contain System Clock Frequency.

Three Devices Running at 100MHz (Example Scenario Two)

In this example, there are three devices running at 100MHz. Assuming the three devices to
be simple synchronous elements. From one element to another, the delay should be 10ns
(synchronous elements to synchronous elements).

X-Ref Target - Figure 7-3

Figure 7-3: Example Scenario Two

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=214

Timing Closure User Guide www.xilinx.com 215
UG612 (v 14.3) October 16, 2012

Step 4: Apply Global and Path Type Timing Constraints

Within the FPGA device, the time taken for the data path in between synchronous
elements is 10ns.

• PAD to Synchronous elements - 6ns. (Requirement: 10ns - 4ns).

It takes a delay of 4ns from the synchronous element of the upstream device to the
Input PAD. The time requirement from Input PAD to synchronous element of FPGA is
covered by the Offset In constraint.

• Synchronous elements to PAD - 5ns (Requirement:- 10ns - 5ns).

It takes a delay of 5ns from out Pad to synchronous element of downstream device.
This time requirement from Synchronous element to PAD of FPGA is covered by the
Offset Out constraint.

Over-Constraining a Design
Use SYSTEM_JITTER to over-constrain a design. Do not increase clock frequency to
over-constrain. Changing the clock frequency changes the relationship between the clock
edges. To over-constrain a specific clock, increase the Input Jitter on that specific clock.

For more information on applying the Jitter constraint, see Clock Uncertainty in Chapter 6.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=215

216 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Step 5: Run Implementation
Now that the design uses the available device features, and is correctly constrained, it is
necessary to run the design through the tools to determine the timing performance.

Xilinx recommends that you start with the default options to get a first impression of the
performance.

The following implementation options have the greatest impact on timing.

• Physical Synthesis Options

• Ignore Keep Hierarchy

• Multiple Cost Tables

• Area Based Options

For more information on specific implementation options, see the Command Line Tools User
Guide (UG628), cited in Appendix A, Additional Resources.

Physical Synthesis Options
SmartXplorer explores all physical synthesis options in MAP such as:

• Global optimization

Note: Does not apply to 7 series devices.

• Register duplication

• Logic optimization

• Retiming

Global optimization set to speed can often impact timing significantly, especially on
Synplify PRO generated netlists.

Ignore Keep Hierarchy
If you must maintain hierarchy in synthesis and through the implementation flow for
debug, run MAP with -ignore_keep_hierarchy to evaluate its impact on performance and
area.

Multiple Cost Tables
When timing is close, cost tables in MAP can often vary the placement enough to obtain
timing closure. The first ten cost tables provide the most variability.

This is an effective way to explore optimal block RAM and DSP48 placement. Good
placement reduces compile runtime.

Area Based Options
The following area based options may also affect timing:

• LUT Combining

• Global Optimization Area

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=216

Timing Closure User Guide www.xilinx.com 217
UG612 (v 14.3) October 16, 2012

Step 5: Run Implementation

LUT Combining

The LUT Combining (LC) constraint has two values:

• auto

• area

Both values typically degrade performance, but auto is less severe.

For some LUT- limited designs, auto can actually increase performance by:

• Reducing the overall LUT count, and

• Giving the placer tool more flexibility.

Global Optimization Area

If LUT Combining (LC) does not provide enough area savings, and a design is unable to fit
in the target device, try -global_opt area. This typically has a much larger impact on
performance than LUT Combining.

Review the following report files to check for warnings that may highlight issues with the
design:

• Synthesis Report

• NGDBuild Report

• MAP Report

• PAR Report

For more information, see Step 7: Review Reports.

Timing Score Options
When you are satisfied with the results, check the timing score in the PAR Report. There
may be a timing score of 0 highlighting that all the constraints are met:

Timing Score: 0 (Setup: 0, Hold: 0, Component Switching Limit: 0)

Checking Timing Results

Even if the timing score is 0, you must still check the specific timing results in Timing
Analyzer to ensure that all constraints have been analyzed as expected.

The TSI Report highlights the interactions among all constraints. If there are multiple
clocks and propagated constraints, the interaction among them are highlighted.

If you have applied Timing Ignore or Multi-Cycle constraints, the TSI Report displays:

• The number of paths that these constraints cover.

• The specific global constraints that these constraints relax.

For more information, see Step 8: Run TRCE and Analyze Timing Results and Report.

Timing Score Between 0 and 100,000

If there is a timing score of between 0 and 100,000, Xilinx recommends running
SmartXplorer to check which tool options have a positive or negative impact on timing.

For more information, see Step 6: Run SmartXplorer.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=217

218 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Timing Score Greater Than 100,000

Although SmartXplorer generally does not resolve timing issues when the timing score is
greater than 100,000, it may nonetheless be useful to run SmartXplorer to understand the
impact of the various tools options. Generally, however, you should analyze the timing
results to understand the reason for the high timing score.

If the timing score is greater than 100,000 see Step 7: Review Reports.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=218

Timing Closure User Guide www.xilinx.com 219
UG612 (v 14.3) October 16, 2012

Step 6: Run SmartXplorer

Step 6: Run SmartXplorer
Use SmartXplorer to run your design through the tools with different sets of options
simultaneously on different machines.

Before ISE® Design Suite Release 12.1, SmartXplorer applied only to implementation
options. SmartXplorer was enhanced in Release 12.1 to apply to synthesis options as well.

SmartXplorer Documentation
Xilinx recommends that you review the following documents before running
SmartXplorer:

• Timing Closure Exploration Tools with SmartXplorer and PlanAhead Tools (White Paper
287)

• SmartXplorer for Command Line Users (UG688)

• SmartXplorer for Project Navigator Users (UG689)

• Command Line Tools User Guide (UG628)

These documents are cited in Appendix A, Additional Resources.

SmartXplorer Features
SmartXplorer has three key features:

• SmartXplorer performs design exploration by using a set of built-in or user-created
implementation strategies to try to meet timing.

Note: A design strategy is a set of tool options and the corresponding values intended to
achieve a particular design goal such as area, speed, or power.

• SmartXplorer allows you to run these strategies in parallel on multiple machines,
completing the job much faster.

• SmartXplorer allows you to efficiently explore:

• Input and output placement

• Data flow

• Block RAM placement

• DSP placement

When to Run SmartXplorer
Xilinx generally recommends running SmartXplorer only when the timing score is less
than 1,000,000.

Running SmartXplorer allows you to check the impact of the various tool options on the
design.

Some implementation options may have a positive impact or a negative impact on the
design. Run multiple cost tables to check the design over the full range of the algorithm.

How to Run SmartXplorer
To run SmartXplorer from Project Navigator, select Tools > SmartXplorer > Launch
SmartXplorer. Once the dialog box opens, configure SmartXplorer as required for your
project.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=219

220 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

To run SmartXplorer from the command line, see the tutorial on www.xilinx.com.

Running SmartXplorer to Resolve Timing Issues
You may experience timing issues when you move between major versions of the
implementation tools. Xilinx recommends running SmartXplorer with multiple cost tables
to resolve these timing issues.

With a single run, the timing results can range based upon the changes introduced in the
new version of the implementation tools.

Multiple cost tables:

• Reduce this range and the random effects of changing cost tables.

• Provide more consistent timing results.

For example, consider a design that:

• Met timing in Release 10.x

• No longer meets timing in Release 13.x

If this occurs, Xilinx recommends that you:

• Run multiple cost tables for each version of the tools.

• Compare both the best results and the average results.

The end result will be nearly equivalent, and demonstrates that:

• There was no tool degradation.

• The single run happened to fall into the low range of possible results.

For more information about synthesis options, see Step 3: Drive the Synthesis Tool. For
more information about implementation options, see Step 5: Run Implementation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=220

Timing Closure User Guide www.xilinx.com 221
UG612 (v 14.3) October 16, 2012

Step 7: Review Reports

Step 7: Review Reports
Once SmartXplorer has completed its multiple runs, or if there is an initial timing score of
greater than 100,000, review the reports.

If SmartXplorer has been run, analyze the impact of the various options and cost tables to
determine which have a positive effect on the design.

The SmartXplorer results show the timing score from each individual run. If one or more
runs results in timing being met, modify the design to use these options as default. See the
previous sections of this chapter for more information on specific options.

If timing still fails, analyze the timing results in Timing Analyzer.

Reviewing Reports
Review the following reports:

• Synthesis Report

• NGDBuild Report

• Map Report

• PAR Report

• Timing Report
X-Ref Target - Figure 7-4

Figure 7-4: Report Files

XST – Synthesis

Translate - NGDBuild

MAP

PAR

Timing Analyzer

(St 8)

*.sry, *.syp

*.bld

*.map, *.mrp

*.par

*.twx, *.twr

* i

.ngc .ucf

.ngd

.ncd .pcf

.ncd .pcf

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=221

222 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Synthesis Report

Review the Synthesis Report as follows.

Review HDL Advisor Warnings

Review HDL Advisor warnings. These warnings may provide hints for achieving full
performance.

INFO:Xst:1767 - HDL ADVISOR - Resource sharing has identified that some
arithmetic operations in this design can share the same physical
resources for reduced device utilization. For improved clock frequency
you may try to disable resource sharing.

Review the Report for Overuse of Synthesis Constraints

Review the Synthesis Report for overuse of synthesis constraints. Overusing synthesis
constraints may lead to:

• Less optimization (KEEP), or

• Excessive replication (MAX_FANOUT).

Review the Report for Excessive Replication

Review the Synthesis Report for excessive replication that could also be caused by:

• The global MAX_FANOUT switch, or

• Register duplication.

Review the Report for Inferred Macros

Review the Advanced HDL Synthesis Report to see which macros are being inferred. This
evaluation may indicate the best physical resource to which to map some of the macros (for
example, multiplier to DSP48).

If that physical resource is not being used, use attributes such as USE_DSP to force the
mapping into certain blocks.

Review Primitive and Black Box Usage for Inferred Primitives

Review Primitive and Black Box Usage to check which primitives are being inferred. This
evaluation shows whether block RAM or DSP blocks were not inferred as expected.

Review the report for any asynchronous resets based upon the type of registers that were
inferred.

For more information on each primitive, see the Libraries Guides, cited in Appendix A,
Additional Resources.

NGDBuild Report

Review the NGDBuild Report as follows.

Review Warning and Information Messages

Review warning and information messages relating to the Constraint System.

ConstraintSystem:178 - TNM ***, used in period specification 'TS_***,
was traced into MMCM_ADV instance ***. The following new TNM groups and
period specifications were generated at the MMCM_ADV output(s):CLKOUT1:
<TIMESPEC TS_*** = PERIOD "***" TS_*** HIGH 50%

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=222

Timing Closure User Guide www.xilinx.com 223
UG612 (v 14.3) October 16, 2012

Step 7: Review Reports

Review Messages Relating to Propagating Constraints

Review messages relating to propagating constraints overriding each other.

NGDBuild:1345 - The constraint <TIMESPEC TS_*** = PERIOD "***" TS_***/
0.15 HIGH 50% PRIORITY 10;> [top.ucf(4)] is overridden by the constraint
<TIMESPEC TS_*** = PERIOD "***" TS_*** / 0.15 HIGH 50% PRIORITY 1>. The
overriden constraint usually comes from the input netlist or ncf files.
Please set XIL_NGDBUILD_CONSTR_OVERRIDE_ERROR to promote this message
to an error.

Confirm Correct Cores and UCF

Confirm in the NGDBuild Report that the correct cores and UCF files have been read into
the design.

If there are multiple UCF files, confirm that these files have been used in the NGDBuild
Report.

Map Report

Review the Map Report as follows.

Determine if Packing is Suboptimal

Review warnings to determine if packing is suboptimal. Suboptimal packing can create
timing closure issues.

WARNING:Pack:2549 - The register "reg_1" has the property IOB=TRUE, but
was not packed into the OLOGIC component. The output signal for register
symbol "reg_out" requires general routing to fabric, but the register
can only be routed to ILOGIC, IODELAY, and IOB.

Confirm Utilization

Confirm that utilization is as expected, and that erroneous trimming is not occurring.

Look for component types above 65% utilization to determine which component types are
becoming limited.

Review Number of LUTs Used as Memory

If limited by LUTs, review the number of LUTs used as memory.

• Can SRLs be dissolved?

• Can DistMem be moved to block RAM?

• Can any arithmetic functions can be moved into DSPs? (See the Synthesis Report).

Review Number of LUTs Used as Shift Registers

If limited by registers, review the number of LUTs used as shift registers.

If the number of LUTs used as shift registers is low, go back to synthesis to see what factors
might be preventing the use of SRLs.

Review the Map Report to see if the number of LUTs used as exclusive route-thrus is high.
A high exclusive route-thru count can indicate that SRLs are not being properly inferred.

Review the Map Report to see how many unique control sets are reported. If the number of
unique control set is over 1,000, rerun MAP with the -detail switch to perform a detailed
analysis of the control sets.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=223

224 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Physical Synthesis Report

Review the Physical Synthesis Report to understand which optimizations occurred when
you use any of the physical synthesis options such as:

• Global optimization

• Logic optimization

• Equivalent register removal

• Retiming

• Register balancing

PAR Report

Review the PAR Report as follows.

Ensure That All Clocks Are Utilizing the Proper Resource

Review the Clock Report to ensure that all clocks are utilizing the proper resource. Large
clock skew on a local resource can indicate that it has a connection to an improper
component.

Verify That the Component Switching Limit Score Is 0

When the final timing score is reported, verify that the component switching limit score is
0. If not, review the Timing Report to see which component specs are being violated.

Ensure That All Constraints Are Being Properly Analyzed

Review the final Timing Report to ensure that all constraints are being properly analyzed.

If there is a constraint for which no paths are analyzed:

• There may be a problem with the constraint definition, or

• Another constraint might be overriding the first constraint.

If you suspect that another constraint is overriding the first constraint, generate a timespec
interaction report in TRCE.

Review the number of global clock buffers to ensure that all clocks are driven by a global
clock buffer. MAP adds circuits to drive unused clocking resources with low speed local
clocks.

Timing Report

For information on reviewing the Timing Report, see Step 8: Run TRCE and Analyze
Timing Results and Report.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=224

Timing Closure User Guide www.xilinx.com 225
UG612 (v 14.3) October 16, 2012

Step 8: Run TRCE and Analyze Timing Results and Report

Step 8: Run TRCE and Analyze Timing Results and Report
When a design fails timing, review the Timing Report to check the constraint that is failing
and the type of failure.

This section analyzes various timing scenarios and related topics to show how to
understand the timing results, and how to use the information most effectively.

Ask the following questions if the design is failing timing:

• Are my constraints correct?

• Should the failing path be covered by a Multi-Cycle of false path constraint?

• Is the failing path due to over- constraining?

• Are the synthesis timing constraints consistent with the implementation
constraints specified in the UCF file?

• Is the netlist reasonable?

• Is synthesis behaving as expected?

• Are there unexpected high fanout nets?

• Are clock trees leading to large skew?

• Is place and route behaving as expected?

• Is placement spread out?

• Is routing satisfactory?

Each question is answered in example scenarios discussed in the next section. These
scenarios examine different timing failures and provide recommendations for each failure.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=225

226 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 7: Achieving Timing Closure

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=226

Timing Closure User Guide www.xilinx.com 227
UG612 (v 14.3) October 16, 2012

Chapter 8

Overcoming Timing Failures

Use Timing Analyzer or the trce command to analyze timing constraints.

This timing analysis:

• Provides a detailed path analysis of the timing path with regards to the timing
constraint requirements.

• Ensures that the specific timing constraints are passed through the implementation
tools.

The path specific details include the following:

• Confirms that the timing requirements were met for all paths per constraint

• Confirms the setup and hold requirements were met for all paths per constraint

• Confirms that the device components are performing within operational frequency
limits

• Provides a list of unconstrained paths that may be a critical path that was not
analyzed

Reviewing Timing Results
The timing results can be reviewed in Timing Analyzer with the TWX and any text editor
with the TWR. In both cases, all worst case or critical paths are reported per constraint.

Reporting Paths by Endpoints
Timing Analyzer and TRCE can also report the paths by endpoints for each constraint. This
reporting provides more details on the failing endpoints that are the most critical for each
constraint.

The same path details are reported, including:

• Clock to out of the source element

• Some routing and logic

• Setup of the destination element.

The failing paths are shown in red in the Timing Analyzer index panel. Running the
analysis by endpoints provides the number of paths to a single endpoint. This discloses the
location of the common critical paths for each constraint.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=227

228 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

TimeSpec Interaction (TSI) Report
If a path is being analyzed under a different constraint than expected, the TimeSpec
Interaction (TSI) Report provides insight into:

• The interaction between constraints, and

• The constraints that can be combined to reduce memory and runtime of the
implementation tools.

Time Group Membership
The time group membership may be the root cause of an unexpected interaction. Timing
Analyzer can generate a Query Time Group Report showing the elements associated with
each time group.

Make the corrections to the time group memberships to remove paths from the interacting
timing constraints.

Device Utilization
Review the Design Summary in the MAP and PAR Reports to verify device utilization.
There will likely be some variations between the Synthesis Utilization Report and the MAP
Design Summary Report.

Review the placement of the clock networks to gain insight into the critical paths. Timing
Analyzer’s Report on Net Delays reports on the clock network delays and clock loads.

Clock Report
Verify the clock networks and the associated clocking elements in:

• The Clock Report section of the PAR Report, and

• The Timing Analyzer Report on Clock Regions

The Clock Report helps to ensure that the clocks were not routed using incorrect routing
resources, such as local routing resources.

The Clock Report lists:

• Clock networks detected by PAR

• Clocking buffer resources that the clock net are routed through

• Clock fanout

• Net skew

• Clock net delay to the clock loads

Timing Summary
The PAR Report Timing Summary provides:

• A snapshot of the performance requirements

• The best-case achievable performance for each clock domain

If the design has failing constraints, the Timing Summary reports the failing constraints
with the worst case slack, timing errors, timing score, and best-case achievable per
constraint.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=228

Timing Closure User Guide www.xilinx.com 229
UG612 (v 14.3) October 16, 2012

Useful Strategies

Useful Strategies
Use the following strategies to improve:

• Failing constraints

• Runtime

• Memory

• Overall design performance

Use Timing Constraints in Synthesis
Use timing constraints in the synthesis tool for better design implementation.

Use Global Timing Constraints on Clocks
Use global timing constraints instead of individual timing constraints on every clock:

• Offset In constraint on all inputs (Global Offset In)

• Offset Out constraint on all outputs (Global Offset Out)

• Period constraint on the input clock signal

Use the Feedback Constraint
In order to insure that the Offset In and Offset Out constraints are analyzed correctly with
an off-chip deskewing clock topology, the Feedback constraint provides the external PCB
delay for the overall Offset In and Offset Out analysis.

If the off-chip delay is set with the Feedback constraint, the timing analysis incorporates
the PCB delay into the clock path of the Offset In and Offset Out constraint analysis.

Do Not Over-Constrain
Do not over-constrain the design. Set the Period constraint to the actual frequency at which
the design will operate.

Over-constraining the design:

• Makes it more difficult for the implementation tools to achieve overall performance.

• Can produce worse results than using the realistic timing performance objectives.

• Is the most common cause of long implementation runtime.

Use Pad Time Group Specific Constraints
Use pad time group specific Offset In and Offset Out constraints:

• For exceptions from the global Offset In and Offset Out constraints, when

• The input or output signals:

• Are clocked by the same clock signal, but

• Have different timing requirements.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=229

230 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

Use From:To or Multi-Cycle Constraints
Use From:To or Multi-Cycle constraints to define a Multi-Cycle path that does not have the
same timing requirement as the Period or single cycle.

The individual timing elements are defined with time groups or can be specified with the
pre-defined time groups (such as FFS or RAMS).

Setup and hold analysis is done during timing analysis for Virtex-5 and newer devices.

Review Failing Timing Paths and Critical Paths
Review the failing timing paths and the critical paths in the Timing Analysis Report.

Change Synthesis and Implementation Options
Change the synthesis and implementation options. Use implementation tool options in
MAP and PAR, such as SmartXplorer.

For more information, see the Command Line Tools User Guide (UG628), cited in
Appendix A, Additional Resources.

Use Floorplanning
Use floorplanning techniques on the critical path to improve placement and packing.

For more information, see the Floorplanning Methodology Guide (UG633), cited in
Appendix A, Additional Resources.

Use Clock Region Area Groups
Use clock region area groups with time groups as area groups to confine the synchronous
elements of the global clock buffers to specific clock regions to prevent contention in clock
regions between global clocks.

AREA_GROUP is attached to logical blocks in the design. The string value of the
constraint identifies a named group of logical blocks that are to be packed together by
mapper and placed in the ranges if specified by PAR.

If AREA_GROUP is attached to a hierarchical block, all sub-blocks in the block are
assigned to the group.

Once defined, an AREA_GROUP can have additional constraints associated with it to
control its implementation.

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

Use Relationally Place Macros (RPM) Constraints
Use Relationally Place Macros (RPM) constraints to improve packing and placement by
defining the relative placement of the individual synchronous elements.

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=230

Timing Closure User Guide www.xilinx.com 231
UG612 (v 14.3) October 16, 2012

Common Causes of Timing Failures

Use LOC Constraints
Use LOC constraints to manually constrain the placement of the larger components, such
as BlockRAM, Multiplier/DSP, and other clock modifying blocks (such as DCM and PLL)
to reduce the implementation runtime. This improves placement and packing by placing
the individual synchronous elements in a specific location on the device.

Common Causes of Timing Failures
The most common causes of timing failures are as follows.

High Fanout Nets
High fanout nets result in poor synthesis, placement, routing, or any combination of these.
Use logic replication or duplication techniques in synthesis or HDL code.

High Delay Nets
High delay nets results in poor placement, routing, or both. Use Area Groups to confine the
placement

High Number of Logic Levels
High number of logic levels results in poor placement, routing, or both. Add pipeline
registers, use one-hot state machines, and use case statements instead of if/else
statement.

High Number of Asynchronous Resets
High number of asynchronous resets, which are not analyzed by default. Add ENABLE
constraints for asynchronous paths through the synchronous element (REG_SR_O) and/or
for asynchronous reset recovery time of the synchronous element (REG_SR_R).

Poor Packing in MAP
Poor packing in MAP results in poor placement, poor routing, or both. Use any of the
following strategies:

• Use BLKNM to force elements to be packed together.

• Use XBLKNM to force elements to not be packed together

• Use Area Groups to confine the packing and placement.

Poor Placement
To correct poor placement in general, use Area Groups and Relationally Placed Macros
(RPMs) to confine the placement.

Poor I/O Timing
Poor I/O timing results in poor placement, poor routing, or both.

Move the IOB Flip Flops or SLICE Flip Flops to meet timing.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=231

232 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

Timing Failure Design Scenarios
The following design scenarios show different timing failures:

• Designs With High Number of Levels of Logic

• Designs With High Fanout

• Designs With High Clock Skew

• Designs With Non-Optimal Placement

• Designs Failing Offset In

• Designs Failing Offset Out

• Designs Fail in Hardware Even Though Timing is Met

Designs With High Number of Levels of Logic
A data path is considered to have a high number of logic levels when the logic delay
exceeds a given percentage of the total path delay. This implies that there is too much logic
between timing end points. Reduce the amount of logic to meet timing requirements.

The given percentage of the total path delay was traditionally around 50% for older
architectures, and around 60% for Virtex® families. There are exceptions to this rule for
carry chain paths, in which the logic delays are much smaller and allow for a higher
number of logic levels or a lower component percentage.

The Timing Report may show a result similar to the following:

Requirement: 2.500ns
Data Path Delay: 2.366ns (Levels of Logic = 17)

The following appears in the data path calculation:

Total 2.366 ns (2.079ns logic, 0.287ns route)

(87.9% logic, 12.1% route)

Evaluate the number of logic levels to see if the number is unrealistic for the timing
requirement.

Evaluate paths with too many levels of logic in synthesis.

If synthesis does not see them as timing critical, try over-constraining in synthesis to
reduce the logic levels.

Reduce Levels of Logic

To reduce the levels of logic, return to the source and try the following:

• Issue state machine optimization suggestions.

For more information, see Xilinx® Answer Record 9411.

• Use case statements instead of nested if-else statements.

• Use tristate instead of large MUXes (7 or more inputs).

• Use creative math. For example, shift instead of multiplying by multiples of two.

• Use decoders instead of comparators.

• Balance logic around registers.

• Pyramid logic with parentheses instead of serial implementation.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=232

Timing Closure User Guide www.xilinx.com 233
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

• Use if-then-else statements only to:

• Pre-decode and register counter values

• Add a level of pipelining to pre-decode and register input signals

• Use MUXes with more than 7-bit wide buses only to do the following:

• Instead of logic, use registers that are in a tristate condition.

• Drive enable signals from registers; tristate are in a tristate condition when enable
signals are 1, and drive signals when the enable is 0.

• Use floorplan tristates.

• Add pipeline registers.

How to Debug Designs with High Logic Levels

This section shows how to debug designs with high logic levels.

The design under consideration has the following parameters:

• The design is a 68-bit counter.

• The clock for this counter is being derived using a DCM.

• The input frequency to the DCM is 100 MHz.

• The clock that drives the counter is 400 MHz.

When this design is implemented, a setup violation is reported. The timing summary
shows that the datapath delay is very high for the requirement. 17 levels of logic is high for
a 2.5 ns requirement.

Slack: -0.022 ns (requirement - (data path - clock path skew + uncertainty))
 Source: TestCounter/Count_0 (FF)
 Destination: TestCounter/Count_67 (FF)
 Requirement: 2.500ns
 Data Path Delay: 2.366ns (Levels of Logic = 17)
 Clock Path Skew: -0.061ns (1.007 - 1.068)
 Source Clock: Clock4X rising at 0.000ns
 Destination Clock: Clock4X rising at 2.500ns
 Clock Uncertainty: 0.095ns

 Clock Uncertainty: 0.095ns ((TSJ^2 + DJ^2)^1/2) / 2 + PE
 Total System Jitter (TSJ): 0.070ns
 Discrete Jitter (DJ): 0.176ns
 Phase Error (PE): 0.000ns

Reviewing the detail of the datapath shows that logic is a large proportion of the datapath
delay.

Maximum Data Path: TestCounter/Count_0 to TestCounter/Count_67
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --- -------------------
 SLICE_X48Y48.AQ Tcko 0.346 TestCounter/Count<3>
 TestCounter/Count_0
 SLICE_X48Y48.A4 net (fanout=1) 0.278 TestCounter/Count<0>
 SLICE_X48Y48.COUT Topcya 0.384 TestCounter/Count<3>
 TestCounter/Mcount_Count_lut<0>_INV_0
 TestCounter/Mcount_Count_cy<3>
 SLICE_X48Y49.CIN net (fanout=1) 0.000 TestCounter/Mcount_Count_cy<3>
 SLICE_X48Y49.COUT Tbyp 0.082 TestCounter/Count<7>
 TestCounter/Mcount_Count_cy<7>

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=233

234 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

 SLICE_X48Y50.CIN net (fanout=1) 0.009 TestCounter/Mcount_Count_cy<7>
 SLICE_X48Y50.COUT Tbyp 0.082 TestCounter/Count<11>
… … …
… … …
… … …
SLICE_X48Y63.CIN net (fanout=1) 0.000 TestCounter/Mcount_Count_cy<59>
 SLICE_X48Y63.COUT Tbyp 0.082 TestCounter/Count<63>
 TestCounter/Mcount_Count_cy<63>
 SLICE_X48Y64.CIN net (fanout=1) 0.000 TestCounter/Mcount_Count_cy<63>
 SLICE_X48Y64.CLK Tcinck 0.119 TestCounter/Count<67>
 TestCounter/Mcount_Count_xor<67>
 TestCounter/Count_67
 --
 Total 2.366ns (2.079ns logic, 0.287ns route)
 (87.9% logic, 12.1% route)

Because a large portion of the total delay is logic delay, the path must be optimized. The
implementation tools can not optimize the path by default, because the component delays
exceed the routing delays for the path.

View the design in FPGA Editor or the PlanAhead tool to check the data path and various
logic delays. For more information, see:

• Cross Probing Between FPGA Editor and Timing Analyzer in Chapter 9

• Cross Probing From the PlanAhead tool to FPGA Editor in Chapter 9

The counter is 68 bits wide. If the 68-bit counter has been split into two 34-bit counters in
the HDL code, the number of levels of logic can be reduced.

wire [33:0] TestCount1;
Counter TestCounter1 (.Clock (Clock4X),
 .Reset (Reset | ~ClockReady),
 .Enable (Channel0),
 .Count (TestCount1));

 defparam TestCounter2.width = 34;
wire [33:0] TestCount2;
reg [33:0] TestCount1_33;
reg TestCounter2En;
always@(posedge Clock4X)

begin
 TestCount1_33 <= TestCount1[33:0];
 if (Xilinx TestCount1_33) TestCounter2En <= 1'b1;
 else TestCounter2En <= 1'b0;
 end
counter TestCounter2 (.Clock (Clock4X),
 .Reset (Reset | ~ClockReady),
 .Enable (TestCounter2En),
 .Count (TestCount2));

The enable signal of the first counter is always driven high. When the output of
counter1 becomes 34'b1, the enable signal is active for counter2. Splitting the
counter of 68 data width into two counters of 34 bits each can reduce the timing violation
because of number of logic levels.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=234

Timing Closure User Guide www.xilinx.com 235
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

Designs With High Fanout
Review the fanout on various nets in the details section of the Timing Report. If a path is
failing timing, examine the fanout of the various signals.

Design With High Fanout Example

Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --
 SLICE_X19Y78.YQ Tcko 0.258 d_mid
 d_mid
 SLICE_X22Y81.BY net (fanout=16) 0.520 d_mid
 SLICE_X22Y81.CLK Tdick 0.210 d_Aux<8>
 d_Aux_8
 --
 Total 0.988ns (0.468ns logic, 0.520ns route)
 (47.4% logic, 52.6% route)

Resolving a Path with High Fanout

Use one of the following methods to resolve a path with high fanout leading to long net
delays:

• Floorplan or apply an AreaGroup constraint to the logic to reduce the net delay.

• Apply a LOC constraint to the origin and add a global buffer to the high fanout signal.

This method applies only for a very high fanout reset net. While global buffers are
generally used only for clocks, they can also be used when high fanout nets are
required, assuming available resources.

• Duplicate the driver and instruct the synthesis tool not to remove the duplicate logic.

• Use specific net fanout control on the specific net, if the synthesis tool allows. This
method is generally the most effective. For more information, see Max Fanout in the
XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687), cited in
Appendix A, Additional Resources.

Designs With High Clock Skew
The timing tool supports a path delay analysis that accounts for clock skew. The clock skew
is added to the calculated data path delay to arrive at a total path delay that is compared to
the constraint. Alternatively, it is reported as the delay for the path when the constraint has
no value.

Skew is taken into account only when it works against the constraint. Skew is truncated to
zero if the reverse is true. This gives worst case timing results.

Design with High Clock Skew Example

What constitutes high clock skew depends on the device, architecture, and specific clock
path and structure. Following is an example:

Requirement: 14.000ns
 Data Path Delay: 5.401ns (Levels of Logic = 0)
 Clock Path Skew: -9.178ns (2.994 - 12.172)

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=235

236 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

Clock Path Skew of 9.178 ns is considered very high in all circumstances. Because the
example crosses between two asynchronous clock domains, do not consider clock skew for
this path. Because the source CLK is driven from a FF, and the destination clock is from a
GTP through a BUFG, PLL, BUFG, DCM, or BUFG, it has a long delay.

This design:

• Has a From-To between the clock domains.

• Does not use the DATAPATHONLY keyword to instruct the tools to ignore the clock
skew.

This is a common mistake in many cross clock domain constraints.

For more information, see the Constraints Guide (UG625), cited in Appendix A, Additional
Resources.

Because the tools assume a relationship between the clocks for analysis even if they are
asynchronous, instruct the tools to ignore the clock skew if necessary.

Debugging Timing Reports With High Clock Skew

You must first understand the source clock and destination clock and their relationship.

When the Source and Destination Clock Are the Same

When the source and destination clock are the same, the tools use the common node on the
clock path to determine the clock skew. It is difficult to manually confirm the skew in this
case, as the common node on the clock path can be difficult to find. Xilinx recommends
calculating the skew back to the common driver to determine if the skew in the timing
analysis is somewhat similar.

When the Source and Destination Clock Are Not the Same

When the source and destination clocks are not the same, the tools propagate the clock
back to the common driver to determine the clock skew. The tools always use the worst
case path for skew analysis.

In the case of a multiplexing clock using a BUFGMUX, the tools may use the wrong clock
for the specific analysis. To correct this, apply a PIN Timing Ignore constraint on the
BUFGMUX pin that does not require analysis.

An example of the constraint is:

PIN "BUFGMUX_inst_name.I1_pin_name" TIG

Priority Constraint

The tools do not use the Priority keyword to determine the clock skew. Because the Period
constraint constrains only the data path, it is not used in the clock skew calculation. The
recommendation given above is the only way to control clock skew calculation when
multiplexing clocks.

Cross Probing

The best way to analyze the clock paths is to use FPGA Editor or the PlanAhead tool and
cross probe with Timing Analyzer. For more information, see Chapter 9, Cross Probing.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=236

Timing Closure User Guide www.xilinx.com 237
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

Designs With Non-Optimal Placement
There are many different scenarios in which non-optimal placement can cause timing
issues. In Virtex®-6 and Spartan®-6 devices, placement rather than routing has the biggest
impact on timing closure.

Design With Non-Optimal Placement Example

Following is an example of non-optimal placement causing timing failure. This example
scenario is a route between a DSP and block RAM in a Spartan-6 device.

To debug this timing issue, you must understand the device architecture and use the cross
probing techniques outlined in Chapter 9, Cross Probing.

Slack: -0.188ns (requirement - (data path - clock path skew + uncertainty))
 Source: ingressLoop[0].ingressFifo/buffer_fifo/Mram_fifo_ram (RAM)
 Destination: arnd1/transformLoop[0].ct/Maddsub_n00271 (DSP)
 Requirement: 5.804ns
 Data Path Delay: 5.920ns (Levels of Logic = 0)
 Clock Path Skew: -0.037ns (0.440 - 0.477)
 Source Clock: bftClk_BUFGP rising at 0.000ns
 Destination Clock: bftClk_BUFGP rising at 5.804ns
 Clock Uncertainty: 0.035ns

 Clock Uncertainty: 0.035ns ((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
 Total System Jitter (TSJ): 0.070ns
 Total Input Jitter (TIJ): 0.000ns
 Discrete Jitter (DJ): 0.000ns
 Phase Error (PE): 0.000ns

 Maximum Data Path at Slow Process Corner: ingressLoop[0].ingressFifo/buffer_fifo/
Mram_fifo_ram to arnd1/transformLoop[0].ct/Maddsub_n00271
 Location Delay type Delay(ns) Physical Resource
 Logical Resource(s)
 --
 RAMB16_X1Y20.DOB18 Trcko_DOB 2.900 ingressLoop[0].ingressFifo/
buffer_fifo/Mram_fifo_ram
 ingressLoop[0].ingressFifo/buffer_fifo/
Mram_fifo_ram
 DSP48_X0Y10.B2 net (fanout=2) 2.783 toBft<1><2>
 DSP48_X0Y10.CLK Tdspdck_B_B0REG 0.237 arnd1/transformLoop[0].ct/
Maddsub_n00271
 arnd1/transformLoop[0].ct/Maddsub_n00271
 --
 Total 5.920ns (3.137ns logic, 2.783ns route)
 (53.0% logic, 47.0% route)

The Timing Report shows that the only variable in the path is the route between the RAM
and DSP. This confirms that placement is most likely the issue with this failing path.

Viewing the Path

View this path in the PlanAhead tool or FPGA editor to obtain a full understanding of the
placement.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=237

238 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

The following figure shows the failing path in the PlanAhead tool.

The path is routing from a RAM on the right hand side of the device to a DSP on the left
hand side. Improving the placement will help resolve this timing issue.

The following figure shows the failing path in FPGA Editor. The routing is highlighted in
red.
X-Ref Target - Figure 8-2

Place DSP and RAM on the Same Side of the Device

To achieve timing closure, place the DSP and RAM on the same side of the device.

• Create specific LOC constraints for the DSP and RAM so the instances have a LOC
constraint applied in order to achieve timing closure. While this can be difficult to do
for a full design, this method is quiet effective if there is only a single timing failure.

• Create AREA GROUP constraints to lock logic to a specific area of a clock region. This
requires the placer tool to place logic in a specific area. Use the PlanAhead tool to
create a Pblock for the block in question.

• Apply a MAX_DELAY on the path between the RAM and DSP, giving it a higher
precedence than the Period constraint. This method is effective for most, but not
necessarily all, designs.

• Pipeline the logic between the RAM and DSP blocks to give the placer tool maximum
flexibility in achieving timing closure for the full design.

X-Ref Target - Figure 8-1

Figure 8-1: Failing Path

Figure 8-2: FPGA Editor Highlighted Routing

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=238

Timing Closure User Guide www.xilinx.com 239
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

Designs Failing Offset In
An Offset In constraint basically constrains the input path. In case of a violation, review the
Timing Report to assess the problem.

Design Failing Offset In Example

Timing constraint: OFFSET = IN 1.5 ns VALID 10 ns BEFORE COMP "CLK" "RISING";
 1 path analyzed, 1 endpoint analyzed, 1 failing endpoint
 1 timing error detected. (1 setup error, 0 hold errors)
 Minimum allowable offset is 1.561ns.
 --

 Paths for end point DATAX (SLICE_X62Y38.AX), 1 path
 --
 Slack (setup path): -0.061ns (requirement - (data path - clock path - clock arrival +
uncertainty))
 Source: DATAIN (PAD)
 Destination: DATAX (FF)
 Destination Clock: CLK1 rising at 0.000ns
 Requirement: 1.500ns
 Data Path Delay: 0.983ns (Levels of Logic = 1)
 Clock Path Delay: -0.410ns (Levels of Logic = 3)
 Clock Uncertainty: 0.168ns

Improving the Offset In Slack

To improve the Offset In slack, you can:

• Reduce the data path.

• Increase the clock path.

• Add positive shift to the clock.

The clock arrival is now positive if the clock is generated internally using a DCM,
MMCM, or PLL

The preferred method to use depends on the design. See the following examples.

• If the data path is from a pad to a SLICE that implements the input FF, choose a LOC
for the pad or SLICE to reduce the data path.

• If the input FF is implemented on the ILOGIC in the proximity of the PAD, the data
path is already minimal.

Improving the Offset In Slack Example

Following is the result of adding a Phase Shift of 20 degrees to a clock which is clocking the
input FF:

==
 Timing constraint: OFFSET = IN 1.5 ns VALID 10 ns BEFORE COMP "CLK" "RISING";
 1 path analyzed, 1 endpoint analyzed, 0 failing endpoints
 0 timing errors detected. (0 setup errors, 0 hold errors)
 Minimum allowable offset is 1.057ns.
 --

 Paths for end point DATAX (SLICE_X62Y77.AX), 1 path
 --

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=239

240 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

 Slack (setup path): 0.443 ns (requirement - (data path - clock path - clock arrival +
uncertainty))
 Source: DATAIN (PAD)
 Destination: DATAX (FF)
 Destination Clock: CLK1 rising at 0.547ns
 Requirement: 1.500ns
 Data Path Delay: 1.065ns (Levels of Logic = 1)
 Clock Path Delay: -0.410ns (Levels of Logic = 3)
 Clock Uncertainty: 0.129ns

The clock arrival has been changed from rising at 0.000 ns to rising at 0.547
ns. This was enough to bring the slack to pass with slack of +0.433ns.

Designs Failing Offset Out
Violations with the Offset Out constraint are similar to violations with the Offset In
constraint in terms of debugging procedure. Only the path covered is different.

Design Failing Offset Out Example

==
 Timing constraint: OFFSET = OUT 2.5 ns AFTER COMP "CLK";
 1 path analyzed, 1 endpoint analyzed, 1 failing endpoint
 1 timing error detected.
 Minimum allowable offset is 2.818ns.
 --

 Paths for end point DATAOUT (T7.PAD), 1 path
 --
 Slack (slowest paths): -0.318ns (requirement - (clock arrival + clock path + data path +
uncertainty))
 Source: DATAOUT (FF)
 Destination: DATAOUT (PAD)
 Source Clock: CLK2 rising at 0.000ns
 Requirement: 2.500ns
 Data Path Delay: 3.066ns (Levels of Logic = 1)
 Clock Path Delay: -0.408ns (Levels of Logic = 3)
 Clock Uncertainty: 0.160ns

Improving the Offset Out Slack

To improve the Offset Out slack, you can:

• Make clock arrival less positive or more negative when there is a clock component
such as an MMCM or a PLL.

• Reduce the data path

• Reduce the clock path

Improving the Offset Out Slack Example

The above example is a failing Offset Out constraint in which there was already a phase
shift of -20 degrees on the MMCM. After changing the phase shift to -30 degrees and
rerunning implementation, the slack changed to positive as shown below.

==
 Timing constraint: OFFSET = OUT 2.5 ns BEFORE COMP "CLK";
 1 path analyzed, 1 endpoint analyzed, 0 failing endpoints

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=240

Timing Closure User Guide www.xilinx.com 241
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

 0 timing errors detected.
 Maximum allowable offset is 2.613ns.
 --

 Paths for end point DATAOUT (A11.PAD), 1 path
 --
 Slack (slowest paths): 0.113 ns (requirement - (clock arrival + clock path + data path +
uncertainty))
 Source: DATAOUT (FF)
 Destination: DATAOUT (PAD)
 Source Clock: CLK2 rising at -0.391ns
 Requirement: 2.500ns
 Data Path Delay: 3.061ns (Levels of Logic = 1)
 Clock Path Delay: -0.408ns (Levels of Logic = 3)
 Clock Uncertainty: 0.125ns

Understanding How the Constraints Interact

One of the biggest problems in most designs is that of constraint interaction. You must
understand the following:

• How do the constraints interact with each other?

• How is the precedence of the constraints understood?

Incorrect understanding of how the constraints interact may result in paths which been
incorrectly constrained.

To understand the interaction of constraints, generate a TSI Report from the command line,
or in Timing Analyzer.

Generating a TSI Report from the Command Line

To generate a TSI Report from the command line, use the -tsi options in the TRCE
command.

For more information, see the Command Line Tools User Guide (UG628, cited in Appendix A,
Additional Resources.

Generating a TSI Report from Timing Analyzer

To generate a TSI Report in Timing Analyzer:

1. Select Timing > Run Analysis.

2. In the Run Timing Analysis dialog box, select A separate constraints interaction
report.

Constraint Interaction Report Example

The TSI Report has a section showing constraint interaction as follows:

Constraint Interaction Report
 =============================

 Constraint interactions for TS_SYS_CLK = PERIOD TIMEGRP "clk_250mhz" 4 ns HIGH 50%;
 1438 paths removed by TS_i_Clocking_i_PLL_250_CLKOUT0_BUF = PERIOD TIMEGRP
"i_Clocking_i_PLL_250_CLKOUT0_BUF" TS_clk_100M / 2.5 HIGH 50%;

 Constraint interactions for TS_clk_27M = PERIOD TIMEGRP "TNM_clk_27M" 37.037 ns HIGH 50%;
 51 paths removed by PATH "TS_resync_regs_path" TIG;

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=241

242 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

The example shows that 1438 paths are removed from TS_SYS_CLK Period constraint by a
Period constraint that propagates through a PLL.

Timing Report or PAR Report Example

Information on the propagated constraints can be viewed in the Timing Report or the PAR
Report.

Derived Constraint Report
Derived Constraints for TS_SYS_CLK
+-------------------------------+-------------+-------------+-------------+-------------+-
------------+-------------+-------------+
| | Period | Actual Period
| Timing Errors | Paths Analyzed |
| Constraint | Requirement |-------------+-------------
|-------------+------------- |-------------+------------- |
| | | Direct |
Derivative | Direct | Derivative | Direct | Derivative |
+-------------------------------+-------------+-------------+-------------+-------------+-
------------+-------------+-------------+
|TS_SYS_CLK | 4.000ns | 1.818ns| 1.162ns| 0|
0| 0| 1039|
| TS_MC_RD_DATA_SEL | 16.000ns| 4.648ns| N/A | 0|
0| 404| 0|
| TS_MC_RDEN_SEL_MUX | 16.000ns| 2.891ns| N/A | 0| 0|
160| 0|

The Constraints Interaction Report shows that the Timing Ignore constraint removes 51
paths from a Period constraint.

Clock Domain Overlap Report

The Clock Domain Overlap Report highlights how the clock domains overlap. The tool
reports all the elements that are common to the specific clock domains.

Clock Domain Overlap Report
===========================

TS_i_Clocking_clk_148M5_i = PERIOD TIMEGRP "i_Clocking_clk_148M5_i" TS_clk_74M / 2
HIGH 50%;
TS_i_Clocking_clk_74M_pll = PERIOD TIMEGRP "i_Clocking_clk_74M_pll" TS_clk_74M HIGH
50%;
TS_i_Clocking_i_27M_PLL_CLKOUT2_BUF = PERIOD TIMEGRP
"i_Clocking_i_27M_PLL_CLKOUT2_BUF" TS_clk_74M / 0.363636364 HIGH 50%;
TS_i_Clocking_clk_13M5_i = PERIOD TIMEGRP "i_Clocking_clk_13M5_i" TS_clk_74M / 0.181818182
HIGH 50%;
TS_clk_force_pp_148M = PERIOD TIMEGRP "clk_force_pp_148M" 6.734 ns HIGH 50% PRIORITY
1;
 {
 i_PreProcessor/i_Video/i_TRS_Insert/sample_number_1 (i_PreProcessor/i_Video/
i_TRS_Insert/sample_number<3>.CLK)
 i_PreProcessor/i_Video/i_TRS_Insert/sample_number_2 (i_PreProcessor/i_Video/
i_TRS_Insert/sample_number<3>.CLK)
 i_PreProcessor/i_Video/i_TRS_Insert/sample_number_3 (i_PreProcessor/i_Video/
i_TRS_Insert/sample_number<3>.CLK)

Xilinx recommends that you review both the Constraints Interaction Report and the Clock
Domain Overlap Report to ensure that all the constraints have been used as required.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=242

Timing Closure User Guide www.xilinx.com 243
UG612 (v 14.3) October 16, 2012

Timing Failure Design Scenarios

Constraints propagate through all clock capable components in the FPGA device, such as
a BUFG, DCM, PLL, and MMCM. Reviewing this report is important to see how the
constraints propagate and interact or overlap with each other.

Grouping logic without fully understanding the logic contained within the group can lead
to problems with interacting constraints. For example, a Timing Ignore constraint may be
interacting and overriding more logic than expected, resulting in incorrect implementation
runs and timing analysis.

Reviewing the Unconstrained Path Report

When examining timing performance, review the Unconstrained Path Report to ensure
that no paths were overlooked when constraining. Generally, there should be no
unconstrained paths.

A design may meet timing but still fail in hardware. The design should work in hardware
if the design is constrained correctly (that is, all paths have appropriate constraints
applied).

Do not add Period constraints without applying Offset In and Offset Out constraints.
Without Offset In constraints, the tools have no knowledge of the relationship between
clock and data arriving at the FPGA devices. In this case, the setup and hold time at the
first synchronous element will not be analyzed.

To turn on the unconstrained path analysis, select Do unconstrained analysis and report
unconstrained paths in the Run Timing Analysis dialog box. Each constraint type is
displayed separately. This makes it easier to see exactly which clocks, input paths, output
paths, or individual paths are unconstrained.

Component Switching Limits Check

Use Component Switching Limits to confirm that the switching limits of the hardware
(such as a DCM and BUFG) as specified in the device datasheet have been met. These are
reported as a separate timing score in the PAR Report.

Phase 6: 0 unrouted; (setup:29212, Hold:319991, Component Switching Limit:0)

In the Timing Report in Timing Analyzer, component switching limits are analyzed as a
separate analysis to the setup and hold. The component switching limit is a device or
silicon limit. It is not a design limit. If the clock frequency is changed, the component
switching limits may change for the components in the design. Component Switching
Analysis is done only on synchronous elements, such as DSP48, Block Ram, BUFG, and
MMCM.

The design should have no component switching limit violations. The component
switching limit violations are used to highlight that the clock frequency is not within the
specified limits of the device. Component switching limit violations can impact the tools
performance, resulting in non-optimal placement and routing. These are the first errors
that should be resolved when trying to close timing.

Designs Fail in Hardware Even Though Timing is Met
Some designs may fail in hardware even though timing is met. These failures may be
related to timing rather than the functionality of the design on the hardware. For example:

• The design fails in high temperatures, but works in low temperatures.

• The design fails on some boards, but works on others.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=243

244 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 8: Overcoming Timing Failures

Debugging Designs That Fail in Hardware Even Though Timing is Met

To debug designs in which timing is met but the design fails in hardware:

1. Check the unconstrained paths.

a. Make sure the design is fully constrained.

b. Apply the Timing Ignore (TIG) constraint to those paths that can be ignored.

c. Be sure that valid multi-cycle paths are applied, and that all valid cross-clock
domain paths are covered correctly.

2. Add System Jitter and Input Jitter information in the User Constraint File (UCF),
especially when the worst case slack is very small. In many designs, jitter has not been
considered, implying that the design is under-constrained.

For more information on applying Jitter constraints, see Clock Uncertainty in
Chapter 6.

3. The design failure can be caused by a board issue. Be sure to follow the SSO, SSN and
PCB design guidelines:

http://www.xilinx.com/products/design_resources/signal_integrity/
si_pcbcheck.htm

4. Narrow the problem down to a specific failing path in the FPGA. Use the ChipScope™
tool, or probe the internal signals to unused pads in FPGA Editor. After the failing path
is found, slow down the frequency of the clock driving the source and the destination.

a. If the failure persists, it may be caused by a hold time violation. Try to add a route
through LUT to the path in FPGA Editor to see if this resolves the problem.

b. If the failure does not exist, the problem is caused by a setup time violation.

c. If this is the case, the delay values in the speed file may not be accurate since the
timing violation is not displayed in the Timing Report.

5. Run post-route simulation to determine whether the problem is caused by the timing
analysis or by a functional issue. Simulation may narrow the issue to a specific signal
or instance.

Send Feedback

http://www.xilinx.com/products/design_resources/signal_integrity/si_pcbcheck.htm
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=244

Timing Closure User Guide www.xilinx.com 245
UG612 (v 14.3) October 16, 2012

Chapter 9

Cross Probing

Cross probing is useful for debugging timing violations. Cross probing allows you to:

• View the problem causing the timing violation.

• Easily cross probe to the:

• Source and destination components

• Data and clock paths

• View their respective delays.

Cross Probing Between FPGA Editor and Timing Analyzer
Cross probing is possible between FPGA Editor and Timing Analyzer. After
implementation in ISE® Design Suite, the NCD file can be:

• Viewed as a standalone file in:

• FPGA Editor

• Timing Analyzer

• Launched from ISE Design Suite.

The paths and components are hyperlinked in the Timing Analyzer Report. Click a
hyperlink to:

• Cross probe to FPGA Editor.

• Display the selected path or component.

• Paths are highlighted.

• Components are shown with a dot.

Alternatively, to view the path or component in FPGA Editor:

1. Open FPGA Editor if it is not already open.

2. Right click the path or component in the Timing Analyzer.

3. Click Show in FPGA Editor to view the path or component.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=245

246 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 9: Cross Probing

Cross Probing From Timing Analyzer to Technology Viewer
To cross-probe from Timing Analyzer to Technology Viewer:

1. Right-click the timing path in the Timing Analyzer Report.

2. Select Show in Technology Viewer.

Technology Viewer launches and displays the path.

You cannot view components in the Technology Viewer.

Cross Probing From the PlanAhead tool to FPGA Editor
To cross probe from the PlanAhead™ design tool to FPGA Editor:

1. Select a timing path from Timing Results View or Device View.

2. Select Cross Probe to FPGA Editor from the popup menu.

FPGA Editor opens with the selected path or instance highlighted.

You can also select individual logic instances to cross probe to FPGA Editor.

The PlanAhead tool can also help in debugging a timing problem. The tool offers the
flexibility of viewing the placement of a failing path in the implemented design, as well as
the schematic associated with a path.

Viewing Timing Paths in Device View
To view timing paths in Device View, load the design in the PlanAhead tool.

• If the design was implemented in the PlanAhead tool, the placements are already
available.

• If the design was not implemented in the PlanAhead tool, import the placement
results using File > Import Placement.

Review timing paths in Device View when you select a path row or rows in the Timing
Results view. The path is highlighted in Device View. You can select multiple paths. All
instances found in the path are selected and highlighted.

Viewing Timing Paths in Schematic View
To view timing paths in Schematic View:

1. Right click the timing path.

2. Select Schematic in the dropdown menu.

The Schematic window opens showing the relevant path.

For more information, see Analyzing Implementation Results in the PlanAhead User Guide
(UG632), cited in Appendix A, Additional Resources.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=246

Timing Closure User Guide www.xilinx.com 247
UG612 (v 14.3) October 16, 2012

Using Cross Probing During Debugging

Using Cross Probing During Debugging
You can cross probe the following to FPGA Editor from the report in XML format.

• Source and destination components

• Clock and data paths

• Individual components in the clock and data paths

• Nets in the clock and data paths

Viewing the Data Path
Click Data Path in the Timing Report to highlight the data path in FPGA Editor. FPGA
Editor gives a quick view of the routings and logic involved in the data path.

This can be useful when trying to understand the reason for a high data path delay. For
example, you can check to see if floorplanning will help the implementation tool meet
timing.

Tracing Through the Clock Networks
You can trace through the clock nets from the source or destination component back to the
origin of the clocks. This can be useful to:

• Investigate a high clock skew.

• View a gated clock to see if it can be improved in terms of delay or location.

• Check the BUFG location chosen by the tool for a clock.

To trace through the clock networks:

1. Cross probe the clock net from Timing Analyzer, or search for the net from FPGA
Editor.

2. Right click the net.

3. Open Properties.

The properties dialog box displays:

• A list of the destination pins

• One source pin to which the clock net is connected

4. Click Go To to select and zoom into the output pin.

The component which generates the clock is given focus in FPGA Editor.

You may need to continue tracing backward until you find the origin of the clock net. For
example, if the clock net comes from a BUFG, once the BUFG is brought into focus, you can
highlight the input net to the BUFG and work backward with the same steps.

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=247

248 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 9: Cross Probing

Viewing the Detailed Path
The Timing Report shows:

• Detailed paths for data and clock paths

• The full name of each net and component along each path

Each net or component can be cross probed directly in FPGA Editor. This allows you to
view:

• The individual logic along a data or clock path

• How a net on the path is fanned out to other components

Showing the Delays
To obtain design delays, use FPGA Editor with the post PAR netlist opened.

Path Delays

For a path, click the destination pin to show the delay for the net.

• Click Delay to view the delay.

OR

• Highlight the source pin and the destination pin at the same time.

Component Delays

For a component, highlight the input and output pins.

Click Delay to show a pin to pin component delay.

Understanding the BELs
To view the configuration of a component in FPGA Editor:

1. Select the component.

2. Double click the component.

The Block window opens, showing the inner details of the component.

3. Click F= in the FPGA Editor to show the attributes of the component.

Slice Attributes Example
Name: demodata<3>
Config : A6LUT:#LUT:O6=((~A6*A5)+(A6*A4)) AFF:#FF AFFINIT:INIT0 AFFMUX:O6 AFFSR:SRLOW
B6LUT:#LUT:O6=((~A5*A6)+(A5*A4)) BFF:#FF BFFINIT:INIT0 BFFMUX:O6 BFFSR:SRLOW
C6LUT:#LUT:O6=((~A5*A3)+(A5*A6)) CFF:#FF CFFINIT:INIT0 CFFMUX:O6 CFFSR:SRLOW CLKINV:CLK
D6LUT:#LUT:O6=((~A6*A4)+(A6*A5)) DFF:#FF DFFINIT:INIT0 DFFMUX:O6 DFFSR:SRLOW SYNC_ATTR:SYNC
A6LUT: ((~A6*A5)+(A6*A4))
B6LUT: ((~A5*A6)+(A5*A4))

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=248

Timing Closure User Guide www.xilinx.com 249
UG612 (v 14.3) October 16, 2012

Using Cross Probing During Debugging

LUT Equation
The LUT equations show the sum of the products of the LUT inputs. Take the example of
the above equations:

A6LUT: ((~A6*A5)+(A6*A4)) means (NOT (A6) and A5) OR (A6 and A4).

These are also given in the Config string as:

A6LUT:#LUT:O6=((~A6*A5)+(A6*A4))

where

O6 is the output of the LUT

INIT Strings
The init strings are INIT values or the initial values of certain components such as:

• Flip flops

• RAMs

• Shift registers

The INIT values are either INIT0 or INIT1. These are basically the state of the flip flops
immediately after configuration of the device.

This is also given as part of the Config string, for example:

DFF:#FF DFFINIT:INIT0

where

• The D flip flop has an initial state of 0 after Global Set Reset (GSR).

See the above example in which the flip flop with CQ output demodata<2> has INIT0.

X-Ref Target - Figure 9-1

Figure 9-1: LUT Equation

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=249

250 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Chapter 9: Cross Probing

Attribute Boxes
Attribute boxes are displayed in the Block window. They show an attribute of the
component. For example, the RESET TYPE attribute box shows the SYNC and ASYNC
options.

Another example is the phase shift of the DCM or MMCM. This is commonly checked in
case the clock arrival values on Timing Report shows unexpected values.

This is useful for checking the attributes of a BEL such as:

• LUT equations

• DSP48 attributes

• PLL attributes

In situations such as the following, you can check to see how a slice has been configured:

• Whether route thru LUTs have been used

• Whether a MUX was used

• Whether a flip flop had the reset connected

Send Feedback

http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=250

Timing Closure User Guide www.xilinx.com 251
UG612 (v 14.3) October 16, 2012

Appendix A

Additional Resources

Xilinx® Resources
• Device User Guides:

http://www.xilinx.com/support/documentation/user_guides.htm

• Glossary of Terms: http://www.xilinx.com/company/terms.htm

• ISE Design Suite: Installation and Licensing Guide (UG798):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/iil.pdf

• ISE Design Suite: Release Notes Guide (UG631):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/irn.pdf

• Product Support and Documentation: http://www.xilinx.com/support

ISE Documentation
• ISE Design Suite Documentation:

http://www.xilinx.com/support/documentation/dt_ise14-3.htm

• Command Line Tools User Guide (UG628):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/devref.pdf

• Synthesis and Simulation Design Guide (UG626):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/sim.pdf

• XST User Guide for Virtex-6, Spartan®-6, and 7 Series Devices (UG687):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/xst_v6s6.pdf

• Constraints Guide (UG625):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/cgd.pdf

• Command Line Tools User Guide (UG628):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/devref.pdf

• Libraries Guides:
http://www.xilinx.com/support/documentation/dt_ise14-3_librariesguides.htm

SmartXplorer Documentation
• Timing Closure Exploration Tools with SmartXplorer and PlanAhead Tools (White Paper

287), http://www.xilinx.com/support/documentation/white_papers/wp287.pdf

• SmartXplorer for Command Line Users (UG688):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug688.pdf

• SmartXplorer for Project Navigator Users (UG689):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/ug689.pdf

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?locale=en;v=14.3;t=libraries+guides
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=xst_v6s6.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=sim.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=glossary
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=iil.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=cgd.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=ise+docs;d=devref.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=irn.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=white+paper;doc;d=wp287.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=white+paper;doc;d=wp374_Partial_Reconfig_Virtex_FPGAs.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=ise+tutorials;d=ug688.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=ise+tutorials;d=ug689.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=support
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=ise+docs
http://www.xilinx.com/cgi-bin/docs/ndoc?l=en;t=user+guide
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;t=ise+docs;d=devref.pdf
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=251

252 www.xilinx.com Timing Closure User Guide
UG612 (v 14.3) October 16, 2012

Appendix A: Additional Resources

PlanAhead tool Documentation
• Floorplanning Methodology Guide (UG633):

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/
Floorplanning_Methodolgy_Guide.pdf

• PlanAhead User Guide (UG632):
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_3/
PlanAhead_UserGuide.pdf

Send Feedback

http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=13.4;d=Floorplanning_Methodology_Guide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=PlanAhead_UserGuide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?l=en;v=14.3;d=PlanAhead_UserGuide.pdf
http://www.xilinx.com
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=ug612&Title=Timing%20Closure%20User%20Guide&releaseVersion=14.3&docPage=252

	Timing Closure User Guide
	Revision History
	Table of Contents
	Ch. 1: Introduction
	Ch. 2: Timing Constraint Methodology
	Basic Constraints Methodology
	Over-Constraining
	Commenting the Design File
	Using Constraints Editor

	Input Timing Constraints
	System Synchronous Inputs
	Source Synchronous Inputs
	UCF Source Synchronous DDR Edge Aligned Example
	UCF Source Synchronous DDR Center Aligned Example
	UCF System Synchronous SDR Examples

	Register-To-Register Timing Constraints
	Automatically Related Synchronous DLL, DCM, PLL, and MMCM Clock Domains
	Manually Related Synchronous Clock Domains
	Asynchronous Clock Domains

	Output Timing Constraints
	System Synchronous Output
	Source Synchronous Output
	False Paths (Paths Between Registers That Do Not Affect Timing)
	Multi-Cycle Paths

	Ch. 3: Timing Constraint Principles
	Constraint System
	DLL, DCM, PLL, BUFR, PMCD, and MMCM Components
	Transformation Conditions
	Example of New Period Constraints on DCM Outputs
	Synchronous Elements
	Analysis With Net Period Constraint
	Phase Keyword
	DLL, DCM, and PLL Component Manipulation with Phase
	Timing Group Creation with Timing Name or Timing Name Net Attributes
	Net Connectivity
	Using a Qualifier
	Predefined Time Groups
	Differences Between Timing Name Net (TNM_NET) and Timing Name (TNM) on a Net
	Propagation Rules for the Timing Name Net Constraint
	Creating Time Groups Using IPAD Signal
	Time Groups Including Only the IBUF Output Signal
	Instance or Hierarchy
	Using Wildcard Characters
	Wildcard Traversing the Design Hierarchy
	Instance Pin
	Grouping Constraints
	Time Groups
	Predefined Time Groups
	User-Defined Time Groups
	Pattern Matching
	Time Group Examples

	Constraint Priorities
	Priority Order
	Two Period Constraints Covering the Same Paths
	Timing Constraint Priority Syntax
	Using the Priority Keyword

	Timing Constraints
	Fundamental Timing Constraints
	Timing Constraint Exceptions
	Setting Timing Constraint Requirements

	Period Constraints
	Clock Period Specification
	Period Constraint on Clock Net
	Included in Period Constraint
	Related Timespec Period Constraints
	Related Period Constraints
	Period Constraint Syntax
	Unrelated Clock Domains
	Paths Covered by Period Constraints

	Offset Constraints
	Specifying Timing Interfaces With External Components
	Specifying External Data and Clock Relationships
	Included in Offset Constraints
	Clocking Path Delays
	Initial Clock Edge
	External Clock Pad and External Data Pads
	Paths Covered by Offset Constraints
	I/O Timing Analysis
	Levels of Coverage
	Group and Global Offset Constraints

	From:To (Multi-Cycle) Constraints
	Multi-Cycle Constraints
	From:To Constraints
	Declaring Start and End Points
	From or To Optional
	Cross Clock Domain Paths
	Pad-to-Pad Path
	Paths Covered by From:To Constraints

	Grouping Constraint Syntax
	Creating Timing Constraints
	Creating Timing Constraints With Constraints Editor
	Condensing the Size of the Time Groups

	Ch. 4: Specifying Timing Constraints in XST
	Applying XST Timing Constraints
	Timing Model
	XCF Constraint Priority
	Methods for Specifying Timing Constraints in XST
	Specifying Timing Constraints in HDL
	Specifying Timing Constraints in XCF
	Specifying Timing Constraints Using the -glob_opt Command Line Switch

	Syntax Examples for XST Timing Constraints
	Asynchronous Register
	Asynchronous Register VHDL Syntax
	Asynchronous Register VHDL Syntax Example
	Asynchronous Register Verilog Syntax
	Asynchronous Register Verilog Syntax Example

	Clock Signal
	Clock Signal VHDL Syntax
	Clock Signal VHDL Syntax Example
	Clock Signal Verilog Syntax
	Clock Signal Verilog Syntax Example
	Clock Signal XCF Syntax

	Maximum Delay
	Maximum Delay VHDL Syntax
	Maximum Delay VHDL Syntax Example
	Maximum Delay Verilog Syntax
	Maximum Delay Verilog Syntax Example

	Maximum Skew
	Maximum Skew VHDL Syntax
	Maximum Skew VHDL Syntax Example
	Maximum Skew Verilog Syntax
	Maximum Skew Verilog Syntax Example

	Offset
	Offset XCF Syntax
	Offset XCF Syntax Example

	Period
	Period VHDL Syntax
	Period VHDL Syntax Example
	Period Verilog Syntax
	Period Verilog Syntax Example
	Timing Specifications Period XCF Syntax
	NET Period XCF Syntax

	System Jitter
	System Jitter VHDL Syntax
	System Jitter VHDL Syntax Example
	System Jitter Verilog Syntax
	System Jitter Verilog Syntax Example
	System Jitter XCF Syntax
	System Jitter XCF Syntax Example

	NET/PIN/INST Timing Ignore
	Timing Ignore XCF Syntax
	Timing Ignore XCF Syntax Example

	Timing Group
	Timing Group XCF Syntax
	Timing Group XCF Syntax Example

	Multi-Cycle Path
	Multi-Cycle Path XCF Syntax
	Multi-Cycle Path XCF Syntax Example

	Timing Specifications
	Timing Specifications XCF Syntax
	Timing Specifications XCF Syntax Examples
	Defining a Maximum Allowable Delay Timing Specifications XCF Syntax Example
	Defining a Clock Period XCF Syntax Example
	Specifying Derived Clocks XCF Syntax Example
	Timing Ignore Paths XCF Syntax Examples

	Timing Name
	Timing Name XCF Syntax
	Timing Name XCF Syntax Example

	Timing Name Net
	Timing Name Net XCF Syntax
	Timing Name Net XCF Syntax Example

	Ch. 5: Specifying Timing Constraints in Synplify
	Constraint Types
	Specifying Timing Constraints in HDL
	Syntax Examples for HDL Timing Constraints
	black_box_pad_pin
	black_box_pad_pin Verilog Syntax
	black_box_pad_pin Verilog Syntax Example
	black_box_pad_pin VHDL Syntax
	black_box_pad_pin VHDL Syntax Example

	black_box_tri_pins
	black_box_tri_pins Verilog Syntax
	black_box_tri_pins Verilog Syntax Example
	black_box_tri_pins VHDL Syntax
	black_box_tri_pins VHDL Syntax Example

	syn_force_seq_prim
	syn_force_seq_prim Verilog Syntax
	syn_force_seq_prim Verilog Syntax Example
	syn_force_seq_prim VHDL Syntax
	syn_force_seq_prim VHDL Syntax Example

	syn_gatedclk_clock_en
	syn_gatedclk_clock_en Verilog Syntax
	syn_gatedclk_clock_en Verilog Syntax Example
	syn_gatedclk_clock_en VHDL Syntax
	syn_gatedclk_clock_en VHDL Syntax Example

	syn_gatedclk_clock_en_polarity
	syn_gatedclk_clock_en_polarity Verilog Syntax
	syn_gatedclk_clock_en_polarity Verilog Syntax Example
	syn_gatedclk_clock_en_polarity VHDL Syntax
	syn_gatedclk_clock_en_polarity VHDL Syntax Example

	syn_isclock
	syn_isclock Verilog Syntax
	syn_isclock Verilog Syntax Example
	syn_isclock VHDL Syntax
	syn_isclock VHDL Syntax Example

	syn_tpdn
	syn_tpdn Verilog Syntax
	syn_tpdn Verilog Syntax Example
	syn_tpdn VHDL Syntax
	syn_tpdn VHDL Syntax Examples
	sdc File Syntax

	syn_tcon
	syn_tcon Verilog Syntax
	syn_tcon Verilog Syntax Example
	syn_tcon VHDL Syntax
	syn_tcon VHDL Syntax Examples
	syn_tcon sdc File Syntax
	syn_tcon sdc File Syntax Example

	syn_tsun
	syn_tsun Verilog Syntax
	syn_tsun Verilog Syntax Example
	syn_tsun VHDL Syntax
	syn_tsun VHDL Syntax Examples
	syn_tsun sdc File Syntax
	syn_tsun sdc File Syntax Example

	Specifying Timing Constraints in an .sdc File (Tcl)
	define_clock
	define_clock Syntax
	define_clock Syntax Examples

	define_clock_delay
	define_clock_delay Syntax
	define_ clock_delay Syntax Example

	define_compile_point
	define_compile_point Syntax
	define_compile_point Syntax Example

	define_current_design
	define_current_design Syntax
	define_current_design Syntax Example

	define_false_path
	define_false_path Syntax
	define_false_path Syntax Example

	define_input_delay
	define_input_delay Syntax
	define_input_delay Syntax Examples

	define_io_standard
	define_io_standard Syntax
	define_io_standard Syntax Example

	define_multicycle_path
	define_multicycle_path Syntax
	define_multicycle_path Syntax Examples

	define_output_delay
	define_output_delay Syntax
	define_output_delay Syntax Examples
	Output Pad Clock Domain Default

	define_path_delay
	define_path_delay Syntax
	define_path_delay Syntax Examples

	define_reg_input_delay
	define_reg_input_delay Syntax

	define_reg_output_delay
	define_reg_output_delay Syntax

	Specify From/To/Through Points
	From/To Points
	Through Points
	Clocks as From/To Points

	Specifying Timing Constraints in a SCOPE Spreadsheet
	Forward Annotation
	I/O Timing Constraints
	Clock Groups
	Relaxing Forward-Annotated I/O Constraints
	Digital Clock Manager/Delay Locked Loop

	Ch. 6: Timing Analysis
	Multi-Corner, Multi-Node Timing Analysis
	Speed File Values
	Process Corner Information
	Worst Case Analysis

	Asynchronous Reset Paths
	Timing Analyzer
	Timing Report
	Timing Report Contents
	Path Details

	Period Analysis
	Header Summary
	Component Switching Limit Analysis
	Path Analysis Details

	Clock Domains
	Gated Clocks
	Single Clock Domain
	Two-Phase Clock Domain
	Multiple Clock Domains
	Clocks from DCM outputs
	Clk0 Clock Domain
	Clk90 Clock Domain
	Clk2x Clock Domain
	CLKDV/CLKFX Clock Domain

	From:To (Multi-Cycle) Analysis
	Header Summary
	Analysis of the Exception Constraint Path
	Analysis of the From:To (Multi-Cycle) Constraint
	DATAPATHONLY Keyword
	Setup and Hold Analysis

	Offset In Analysis
	Detailed Path Analysis

	Offset In Before Constraint
	Setup Relationship Equation
	Offset In Requirement Value
	Hold Relationship Equation

	Offset In After Constraint
	Offset Out Analysis
	Detailed Path Analysis
	Bus Base Analysis
	Bus-Based Timing Analysis
	Header Summary Section

	Offset Out Constraint
	Clock Arrival Time
	Clock-to-Pad Requirements

	Offset Out After Constraint
	Offset Rising and Offset Falling Keywords

	Offset Out Before Constraint
	Clock Skew
	Causes of Large Clock Skew
	Difference Between Clock Skew and Phase

	Clock Uncertainty
	DCM Clock Uncertainty Equation
	Clock Uncertainty Examples

	Ch. 7: Achieving Timing Closure
	When Timing Closure Is Achieved
	Prerequisites to Achieving Timing Closure
	Device Requirements
	Timing Closure Flowchart

	Steps to Achieving Timing Closure
	Step 1: Specify Good Pin Constraints
	Designs with Large Components
	Pin Location
	Partial Reconfiguration, Partitioning and Floorplanning
	Pin Placement Strategy
	Embedded Elements

	Step 2: Use Proper Coding Techniques and Architectural Resources
	Device Architectural Resources
	Coding Guidelines
	Clocking Guidelines
	Resets and Clock Enables Guidelines
	Block RAM and DSP Guidelines

	Step 3: Drive the Synthesis Tool
	Pipelining the Design
	Synthesis Options That Impact Timing

	Step 4: Apply Global and Path Type Timing Constraints
	Basic Timing Model
	Isolate Global Constraints
	Global Timing Constraints
	Example Scenarios
	Over-Constraining a Design

	Step 5: Run Implementation
	Physical Synthesis Options
	Ignore Keep Hierarchy
	Multiple Cost Tables
	Area Based Options
	Timing Score Options

	Step 6: Run SmartXplorer
	SmartXplorer Documentation
	SmartXplorer Features
	When to Run SmartXplorer
	How to Run SmartXplorer
	Running SmartXplorer to Resolve Timing Issues

	Step 7: Review Reports
	Reviewing Reports

	Step 8: Run TRCE and Analyze Timing Results and Report

	Ch. 8: Overcoming Timing Failures
	Reviewing Timing Results
	Reporting Paths by Endpoints
	TimeSpec Interaction (TSI) Report
	Time Group Membership
	Device Utilization

	Clock Report
	Timing Summary
	Useful Strategies
	Use Timing Constraints in Synthesis
	Use Global Timing Constraints on Clocks
	Use the Feedback Constraint
	Do Not Over-Constrain
	Use Pad Time Group Specific Constraints
	Use From:To or Multi-Cycle Constraints
	Review Failing Timing Paths and Critical Paths
	Change Synthesis and Implementation Options
	Use Floorplanning
	Use Clock Region Area Groups
	Use Relationally Place Macros (RPM) Constraints
	Use LOC Constraints

	Common Causes of Timing Failures
	High Fanout Nets
	High Delay Nets
	High Number of Logic Levels
	High Number of Asynchronous Resets
	Poor Packing in MAP
	Poor Placement
	Poor I/O Timing

	Timing Failure Design Scenarios
	Designs With High Number of Levels of Logic
	Designs With High Fanout
	Designs With High Clock Skew
	Designs With Non-Optimal Placement
	Designs Failing Offset In
	Designs Failing Offset Out
	Designs Fail in Hardware Even Though Timing is Met

	Ch. 9: Cross Probing
	Cross Probing Between FPGA Editor and Timing Analyzer
	Cross Probing From Timing Analyzer to Technology Viewer
	Cross Probing From the PlanAhead tool to FPGA Editor
	Viewing Timing Paths in Device View
	Viewing Timing Paths in Schematic View

	Using Cross Probing During Debugging
	Viewing the Data Path
	Tracing Through the Clock Networks
	Viewing the Detailed Path
	Showing the Delays
	Understanding the BELs
	Slice Attributes Example
	LUT Equation
	INIT Strings
	Attribute Boxes

	Appx. A: Additional Resources
	Xilinx® Resources
	ISE Documentation
	SmartXplorer Documentation
	PlanAhead tool Documentation

